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Swarm Learning for decentralized and 
confidential clinical machine learning

Stefanie Warnat-Herresthal1,2,127, Hartmut Schultze3,127, Krishnaprasad Lingadahalli Shastry3,127, 
Sathyanarayanan Manamohan3,127, Saikat Mukherjee3,127, Vishesh Garg3,4,127, 
Ravi Sarveswara3,127, Kristian Händler1,5,127, Peter Pickkers6,127, N. Ahmad Aziz7,8,127, 
Sofia Ktena9,127, Florian Tran10,11, Michael Bitzer12, Stephan Ossowski13,14, Nicolas Casadei13,14, 
Christian Herr15, Daniel Petersheim16, Uta Behrends17, Fabian Kern18, Tobias Fehlmann18, 
Philipp Schommers19, Clara Lehmann19,20,21, Max Augustin19,20,21, Jan Rybniker19,20,21, 
Janine Altmüller22, Neha Mishra11, Joana P. Bernardes11, Benjamin Krämer23, 
Lorenzo Bonaguro1,2, Jonas Schulte-Schrepping1,2, Elena De Domenico1,5, Christian Siever3, 
Michael Kraut1,5, Milind Desai3, Bruno Monnet3, Maria Saridaki9, Charles Martin Siegel3, 
Anna Drews1,5, Melanie Nuesch-Germano1,2, Heidi Theis1,5, Jan Heyckendorf23, 
Stefan Schreiber10, Sarah Kim-Hellmuth16, COVID-19 Aachen Study (COVAS)*, 
Jacob Nattermann24,25, Dirk Skowasch26, Ingo Kurth27, Andreas Keller18,28, Robert Bals15, 
Peter Nürnberg22, Olaf Rieß13,14, Philip Rosenstiel11, Mihai G. Netea29,30, Fabian Theis31, 
Sach Mukherjee32, Michael Backes33, Anna C. Aschenbrenner1,2,5,29, Thomas Ulas1,2,  
Deutsche COVID-19 Omics Initiative (DeCOI)*, Monique M. B. Breteler7,34,128,  
Evangelos J. Giamarellos-Bourboulis9,128, Matthijs Kox6,128, Matthias Becker1,5,128, 
Sorin Cheran3,128, Michael S. Woodacre3,128, Eng Lim Goh3,128 & Joachim L. Schultze1,2,5,128 ✉

Fast and reliable detection of patients with severe and heterogeneous illnesses is a 
major goal of precision medicine1,2. Patients with leukaemia can be identified using 
machine learning on the basis of their blood transcriptomes3. However, there is an 
increasing divide between what is technically possible and what is allowed, because of 
privacy legislation4,5. Here, to facilitate the integration of any medical data from any 
data owner worldwide without violating privacy laws, we introduce Swarm 
Learning—a decentralized machine-learning approach that unites edge computing, 
blockchain-based peer-to-peer networking and coordination while maintaining 
confidentiality without the need for a central coordinator, thereby going beyond 
federated learning. To illustrate the feasibility of using Swarm Learning to develop 
disease classifiers using distributed data, we chose four use cases of heterogeneous 
diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 
16,400 blood transcriptomes derived from 127 clinical studies with non-uniform 
distributions of cases and controls and substantial study biases, as well as more than 
95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those 
developed at individual sites. In addition, Swarm Learning completely fulfils local 
confidentiality regulations by design. We believe that this approach will notably 
accelerate the introduction of precision medicine.

Identification of patients with life-threatening diseases, such as leu-
kaemias, tuberculosis or COVID-196,7, is an important goal of preci-
sion medicine2. The measurement of molecular phenotypes using 
‘omics’ technologies1 and the application of artificial intelligence (AI) 
approaches4,8 will lead to the use of large-scale data for diagnostic 
purposes. Yet, there is an increasing divide between what is techni-
cally possible and what is allowed because of privacy legislation5,9,10. 
Particularly in a global crisis6,7, reliable, fast, secure, confidentiality- and 
privacy-preserving AI solutions can facilitate answering important 
questions in the fight against such threats11–13. AI-based concepts range 
from drug target prediction14 to diagnostic software15,16. At the same 

time, we need to consider important standards relating to data privacy 
and protection, such as Convention 108+ of the Council of Europe17.

AI-based solutions rely intrinsically on appropriate algorithms18, 
but even more so on large training datasets19. As medicine is inherently 
decentral, the volume of local data is often insufficient to train reliable 
classifiers20,21. As a consequence, centralization of data is one model 
that has been used to address the local limitations22. While beneficial 
from an AI perspective, centralized solutions have inherent disad-
vantages, including increased data traffic and concerns about data 
ownership, confidentiality, privacy, security and the creation of data 
monopolies that favour data aggregators19. Consequently, solutions 
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to the challenges of central AI models must be effective, accurate and 
efficient; must preserve confidentiality, privacy and ethics; and must 
be secure and fault-tolerant by design23,24. Federated AI addresses some 
of these aspects19,25. Data are kept locally and local confidentiality issues 
are addressed26, but model parameters are still handled by central 
custodians, which concentrates power. Furthermore, such star-shaped 
architectures decrease fault tolerance.

We hypothesized that completely decentralized AI solutions would 
overcome current shortcomings, and accommodate inherently decen-
tral data structures and data privacy and security regulations in medi-
cine. The solution (1) keeps large medical data locally with the data 
owner; (2) requires no exchange of raw data, thereby also reducing 
data traffic; (3) provides high-level data security; (4) guarantees secure, 
transparent and fair onboarding of decentral members of the network 
without the need for a central custodian; (5) allows parameter merging 
with equal rights for all members; and (6) protects machine learning 
models from attacks. Here, we introduce Swarm Learning (SL), which 
combines decentralized hardware infrastructures, distributed machine 
learning based on standardized AI engines with a permissioned block-
chain to securely onboard members, to dynamically elect the leader 
among members, and to merge model parameters. Computation is 

orchestrated by an SL library (SLL) and an iterative AI learning proce-
dure that uses decentral data (Supplementary Information).

Concept of Swarm Learning
Conceptually, if sufficient data and computer infrastructure are avail-
able locally, machine learning can be performed locally (Fig. 1a). In 
cloud computing, data are moved centrally so that machine learning 
can be carried out by centralized computing (Fig. 1b), which can sub-
stantially increase the amount of data available for training and thereby 
improve machine learning results19, but poses disadvantages such as 
data duplication and increased data traffic as well as challenges for 
data privacy and security27. Federated computing approaches25 have 
been developed, wherein dedicated parameter servers are responsible 
for aggregating and distributing local learning (Fig. 1c); however, a 
remainder of a central structure is kept.

As an alternative, we introduce SL, which dispenses with a dedicated 
server (Fig. 1d), shares the parameters via the Swarm network and 
builds the models independently on private data at the individual sites 
(short ‘nodes’ called Swarm edge nodes) (Fig. 1e). SL provides security 
measures to support data sovereignty, security, and confidentiality 
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Fig. 1 | Concept of Swarm Learning. a, Illustration of the concept of local 
learning with data and computation at different, disconnected locations.  
b, Principle of cloud-based machine learning. c, Federated learning, with data 
being kept with the data contributor and computing performed at the site of 
local data storage and availability, but parameter settings orchestrated by a 
central parameter server. d, Principle of SL without the need for a central 
custodian. e, Schematic of the Swarm network, consisting of Swarm edge 
nodes that exchange parameters for learning, which is implemented using 
blockchain technology. Private data are used at each node together with the 
model provided by the Swarm network. f–l, Descriptions of the transcriptome 

datasets used. f, g, Datasets A1 (f; n = 2,500) and A2 (g; n = 8,348): two 
microarray-based transcriptome datasets of PBMCs. h, Dataset A3: 1,181 
RNA-seq-based transcriptomes of PBMCs. i, Dataset B: 1,999 RNA-seq-based 
whole blood transcriptomes. j, Dataset E: 2,400 RNA-seq-based whole blood 
and granulocyte transcriptomes. k, Dataset D: 2,143 RNA-seq-based whole 
blood transcriptomes. l, Dataset C: 95,831 X-ray images. CML, chronic myeloid 
leukaemia; CLL, chronic lymphocytic leukaemia; Inf., infections; Diab., type II 
diabetes; MDS, myelodysplastic syndrome; MS, multiple sclerosis; JIA, juvenile 
idiopathic arthritis; TB, tuberculosis; HIV, human immunodeficiency virus; 
AID, autoimmune disease.
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(Extended Data Fig. 1a) realized by private permissioned blockchain 
technology (Extended Data Fig. 1b). Each participant is well defined and 
only pre-authorized participants can execute transactions. Onboarding 
of new nodes is dynamic, with appropriate authorization measures to 

recognize network participants. A new node enrolls via a blockchain 
smart contract, obtains the model, and performs local model training 
until defined conditions for synchronization are met (Extended Data 
Fig. 1c). Next, model parameters are exchanged via a Swarm application 
programming interface (API) and merged to create an updated model 
with updated parameter settings before starting a new training round 
(Supplementary Information).

At each node, SL is divided into middleware and an application layer. 
The application environment contains the machine learning platform, 
the blockchain, and the SLL (including a containerized Swarm API to 
execute SL in heterogeneous hardware infrastructures), whereas the 
application layer contains the models (Extended Data Fig. 1d, Sup-
plementary Information); for example, analysis of blood transcrip-
tome data from patients with leukaemia, tuberculosis and COVID-19 
(Fig. 1f–k) or radiograms (Fig. 1l). We selected both heterogeneous and 
life-threatening diseases to exemplify the immediate medical value 
of SL.

Swarm Learning predicts leukaemias
First, we used peripheral blood mononuclear cell (PBMC) transcrip-
tomes from more than 12,000 individuals (Fig. 1f–h) in three datasets 
(A1–A3, comprising two types of microarray and RNA sequencing 
(RNA-seq))3. If not otherwise stated, we used sequential deep neural 
networks with default settings28. For each real-world scenario, sam-
ples were split into non-overlapping training datasets and a global 
test dataset29 that was used for testing the models built at individual 
nodes and by SL (Fig. 2a). Within training data, samples were ‘siloed’ 
at each of the Swarm nodes in different distributions, thereby mimick-
ing clinically relevant scenarios (Supplementary Table 1). As cases, we 
used samples from individuals with acute myeloid leukaemia (AML); all 
other samples were termed ‘controls’. Each node within this simulation 
could stand for a medical centre, a network of hospitals, a country or 
any other independent organization that generates such medical data 
with local privacy requirements.

First, we distributed cases and controls unevenly at and between 
nodes (dataset A2) (Fig. 2b, Extended Data Fig. 2a, Supplementary 
Information), and found that SL outperformed each of the nodes 
(Fig. 2b). The central model performed only slightly better than SL in 
this scenario (Extended Data Fig. 2b). We obtained very similar results 
using datasets A1 and A3, which strongly supports the idea that the 
improvement in performance of SL is independent of data collection 
(clinical studies) or the technologies (microarray or RNA-seq) used for 
data generation (Extended Data Fig. 2c–e).

We tested five additional scenarios on datasets A1–A3: (1) using evenly 
distributed samples at the test nodes with case/control ratios similar 
to those in the first scenario (Fig. 2c, Extended Data Fig. 2f–j, Supple-
mentary Information); (2) using evenly distributed samples, but siloing 
samples from particular clinical studies to dedicated training nodes 
and varying case/control ratios between nodes (Fig. 2d, Extended Data 
Fig. 3a–h, Supplementary Information); (3) increasing sample size for 
each training node (Extended Data Fig. 4a–f, Supplementary Informa-
tion); (4) siloing samples generated with different technologies at dedi-
cated training nodes (Fig. 2e, Extended Data Fig. 4g–i, Supplementary 
Information); and (5) using different RNA-seq protocols (Extended 
Data Fig. 4j–k, Supplementary Table 7, Supplementary Information). 
In all these scenarios, SL outperformed individual nodes and was either 
close to or equivalent to the central models.

We repeated several of the scenarios with samples from patients with 
acute lymphoblastic leukaemia (ALL) as cases, extended the predic-
tion to a multi-class problem across four major types of leukaemia, 
extended the number of nodes to 32, tested onboarding of nodes at a 
later time point (Extended Data Fig. 5a–j) and replaced the deep neural 
network with LASSO (Extended Data Fig. 6a–c), and the results echoed 
the above findings (Supplementary Information).
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Fig. 2 | Swarm Learning to predict leukaemias from PBMC data. a, Overview 
of the experimental setup. Data consisting of biological replicates are split into 
non-overlapping training and test sets. Training data are siloed in Swarm edge 
nodes 1–3 and testing node T is used as independent test set. SL is achieved by 
integrating nodes 1–3 for training following the procedures described in the 
Supplementary Information. Red and blue bars illustrate the scenario-specific 
distribution of cases and controls among the nodes; percentages depict the 
percentage of samples from the full dataset. b, Scenario using dataset A2 with 
uneven distributions of cases and controls and of samples sizes among nodes. 
c, Scenario with uneven numbers of cases and controls at the different training 
nodes but similar numbers of samples at each node. d, Scenario with samples 
from independent studies from A2 sampled to different nodes, resulting in 
varying numbers of cases and controls per node. e, Scenario in which each 
node obtained samples from different transcriptomic technologies (nodes 1–3: 
datasets A1–A3). The test node obtained samples from each dataset A1–A3.  
b–e, Box plots show accuracy of 100 permutations performed for the 3 training 
nodes individually and for SL. All samples are biological replicates. Centre dot, 
mean; box limits, 1st and 3rd quartiles; whiskers, minimum and maximum 
values. Accuracy is defined for the independent fourth node used for testing 
only. Statistical differences between results derived by SL and all individual 
nodes including all permutations performed were calculated using one-sided 
Wilcoxon signed-rank test with continuity correction; *P < 0.05, exact P values 
listed in Supplementary Table 5.
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Swarm Learning to identify tuberculosis
We built a second use case to identify patients with tuberculosis (TB) 
from blood transcriptomes30,31 (Fig. 1i, Supplementary Information). 
First, we used all TB samples (latent and active) as cases and distributed 
TB cases and controls evenly among the nodes (Extended Data Fig. 7a). 
SL outperformed individual nodes and performed slightly better than 
a central model under these conditions (Extended Data Fig. 7b, Sup-
plementary Information). Next, we predicted active TB only. Latently 
infected TB cases were treated as controls (Extended Data Fig. 7a) and 
cases and controls were kept even, but the number of training samples 
was reduced (Fig. 3a). Under these more challenging conditions, overall 
performance dropped, but SL still performed better than any of the 
individual nodes. When we further reduced training sample numbers by 
50%, SL still outperformed the nodes, but all statistical readouts at nodes 
and SL showed lower performance; however, SL was still equivalent to a 
central model (Extended Data Fig. 7c, Supplementary Information), con-
sistent with general observations that AI performs better when training 
data are increased19. Dividing up the training data at three nodes into six 
smaller nodes reduced the performance of each individual node, whereas 
the SL results did not deteriorate (Fig. 3b, Supplementary Information).

As TB has endemic characteristics, we used TB to simulate potential 
outbreak scenarios to identify the benefits and potential limitations of 
SL and determine how to address them (Fig. 3c, Extended Data Fig. 7d–f, 
Supplementary Information). The first scenario reflects a situation 
in which three independent regions (simulated by the nodes) would 
already have sufficient but different numbers of disease cases (Fig. 3c, 
Supplementary Information). In this scenario, the results for SL were 
almost comparable to those in Fig. 3a, whereas the results for node 
2 (which had the smallest numbers of cases and controls) dropped 
noticeably. Reducing prevalence at the test node caused the node 
results to deteriorate, but the performance of SL was almost unaffected 
(Extended Data Fig. 7d, Supplementary Information).

We decreased case numbers at node 1 further, which reduced test 
performance for this node (Extended Data Fig. 7e), without substan-
tially impairing SL performance. When we lowered prevalence at the 
test node, all performance parameters, including the F1 score (a meas-
ure of accuracy), were more resistant for SL than for individual nodes 
(Extended Data Fig. 7f–j).

We built a third use case for SL that addressed a multi-class predic-
tion problem using a large publicly available dataset of chest X-rays32 
(Figs. 1l, 3d, Supplementary Information, Methods). SL outperformed 
each node in predicting all radiological findings included (atelectasis, 
effusion, infiltration and no finding), which suggests that SL is also 
applicable to non-transcriptomic data spaces.

Identification of COVID-19
In the fourth use case, we addressed whether SL could be used to detect 
individuals with COVID-19 (Fig. 1k, Supplementary Table 6). Although 
COVID-19 is usually detected by using PCR-based assays to detect viral 
RNA33, assessing the specific host response in addition to disease pre-
diction might be beneficial in situations for which the pathogen is 
unknown, specific pathogen tests are not yet possible, existing tests 
might produce false negative results, and blood transcriptomics can 
contribute to the understanding of the host’s immune response34–36.

In a first proof-of-principle study, we simulated an outbreak situation 
node with evenly distributed cases and controls at training nodes and 
test nodes (Extended Data Fig. 8a, b); this showed very high statistical 
performance parameters for SL and all nodes. Lowering the prevalence 
at test nodes reduced performance (Extended Data Fig. 8c), but F1 
scores deteriorated only when we reduced prevalence further (1:44 
ratio) (Extended Data Fig. 8d); even under these conditions, SL per-
formed best. When we reduced cases at training nodes, all performance 
measures remained very high at the test node for SL and individual 
nodes (Extended Data Fig. 8e–j). When we tested outbreak scenarios 
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with very few cases at test nodes and varying prevalence at the inde-
pendent test node (Fig. 4a), nodes 2 and 3 showed decreased perfor-
mance; SL outperformed these nodes (Fig. 4b, Extended Data Fig. 8k, 
l) and was equivalent to the central model (Extended Data Fig. 8m). 
The model showed no sign of overfitting (Extended Data Fig. 8n) and 
comparable results were obtained when we increased the number of 
training nodes (Extended Data Fig. 9a–d).

We recruited further medical centres in Europe that differed in 
controls and distributions of age, sex, and disease severity (Supple-
mentary Information), which yielded eight individual centre-specific 
sub-datasets (E1–8; Extended Data Fig. 9e).

In the first setting, centres E1–E6 teamed up and joined the Swarm 
network with 80% of their local data; 20% of each centre’s dataset was 
distributed to a test node29 (Fig. 4c) and the model was also tested on 
two external datasets, one with convalescent COVID-19 cases (E7) and 
one of granulocyte-enriched COVID-19 samples (E8). SL outperformed 
all nodes in terms of area under the curve (AUC) for the prediction of 
the global test datasets (Fig. 4d, Extended Data Fig. 9f, Supplementary 
Information). When looking at performance on testing samples split by 
centre of origin, it became clear that individual centre nodes could not 
have predicted samples from other centres (Extended Data Fig. 9g). By 
contrast, SL predicted samples from these nodes successfully. This was 
similarly true when we reduced the scenario, using E1, E2, and E3 as train-
ing nodes and E4 as an independent test node (Extended Data Fig. 9h).

In addition, SL can cope with biases such as sex distribution, age or 
co-infection bias (Extended Data Fig. 10a–c, Supplementary Informa-
tion) and SL outperformed individual nodes when distinguishing mild 
from severe COVID-19 (Extended Data Fig. 10d, e). Collectively, we 
provide evidence that blood transcriptomes from COVID-19 patients 
represent a promising feature space for applying SL.

Discussion
With increasing efforts to enforce data privacy and security5,9,10 and to 
reduce data traffic and duplication, a decentralized data model will 
become the preferred choice for handling, storing, managing, and ana-
lysing any kind of large medical dataset19. Particularly in oncology, success 
has been reported in machine-learning-based tumour detection3,37, sub-
typing38, and outcome prediction39, but progress is hindered by the lim-
ited size of datasets19, with current privacy regulations5,9,10 making it less 
appealing to develop centralized AI systems. SL, as a decentralized learn-
ing system, replaces the current paradigm of centralized data sharing in 
cross-institutional medical research. SL’s blockchain technology gives 
robust measures against dishonest participants or adversaries attempting 
to undermine a Swarm network. SL provides confidentiality-preserving 
machine learning by design and can inherit new developments in differ-
ential privacy algorithms40, functional encryption41, or encrypted transfer 
learning approaches42 (Supplementary Information).

Global collaboration and data sharing are important quests13 and 
both are inherent characteristics of SL, with the further advantage 
that data sharing is not even required and can be transformed into 
knowledge sharing, thereby enabling global collaboration with com-
plete data confidentiality, particularly if using medical data. Indeed, 
statements by lawmakers have emphasized that privacy rules apply 
fully during a pandemic43. Particularly in such crises, AI systems need 
to comply with ethical principles and respect human rights12. Systems 
such as SL—allowing fair, transparent, and highly regulated shared data 
analytics while preserving data privacy—are to be favoured. SL should 
be explored for image-based diagnosis of COVID-19 from patterns in 
X-ray images or CT scans15,16, structured health records12, or data from 
wearables for disease tracking12. Collectively, SL and transcriptomics 
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(or other medical data) are a very promising approach to democratize 
the use of AI among the many stakeholders in the domain of medicine, 
while at the same time resulting in improved data confidentiality, pri-
vacy, and data protection, and a decrease in data traffic.
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Methods

Pre-processing
PBMC transcriptome dataset (dataset A). We used a previously pub-
lished dataset compiled for predicting AML in blood transcriptomes 
derived from PBMCs (Supplementary Information)3. In brief, all raw 
data files were downloaded from GEO (https://www.ncbi.nlm.nih.gov/
geo/) and the RNA-seq data were preprocessed using the kallisto v0.43.1 
aligner against the human reference genome gencode v27 (GRCh38.
p10). For normalization, we considered all platforms independently, 
meaning that normalization was performed separately for the sam-
ples in datasets A1, A2 and A3. Microarray data (datasets A1 and A2) 
were normalized using the robust multichip average (RMA) expression 
measures, as implemented in the R package affy v.1.60.0. The RNA-seq 
data (dataset A3) were normalized using the R package DESeq2 (v 1.22.2) 
with standard parameters. To keep the datasets comparable, data were 
filtered for genes annotated in all three datasets, which resulted in 
12,708 genes. No filtering of low-expressed genes was performed. All 
scripts used in this study for pre-processing are provided as a docker 
container on Docker Hub (v 0.1, https://hub.docker.com/r/schultzelab/
aml_classifier).

Whole-blood-derived transcriptome datasets (datasets B, D and 
E). As alignment of whole blood transcriptome data can be performed 
in many ways, we re-aligned all downloaded and collected datasets 
(Supplementary Information; these were 30.6 terabytes in size and com-
prised a total of 63.4 terabases) to the human reference genome gen-
code v33 (GRCh38.p13) and quantified transcript counts using STAR, an 
ultrafast universal RNA-seq aligner (v.2.7.3a). For all samples in datasets 
B, D, and E, raw counts were imported using DESeq (v.1.22.2, DESeqData 
SetFromMatrix function) and size factors for normalization were cal-
culated using the DESeq function with standard parameters. This was 
done separately for datasets B, D, and E. As some of the samples were 
prepared with poly-A selection to enrich for protein-coding mRNAs, we 
filtered the complete dataset for protein-coding genes to ensure greater 
comparability across library preparation protocols. Furthermore, we 
excluded all ribosomal protein-coding genes, as well as mitochondrial 
genes and genes coding for haemoglobins, which resulted in 18,135 
transcripts as the feature space in dataset B, 19,358 in dataset D and 
19,399 in dataset E. Furthermore, transcripts with overall expression 
<100 were excluded from further analysis. Other than that, no filtering 
of transcripts was performed. Before using the data in machine learn-
ing, we performed a rank transformation to normality on datasets B, 
D and E. In brief, transcript expression values were transformed from 
RNA-seq counts to their ranks. This was done transcript-wise, meaning 
that all transcript expression values per sample were given a rank based 
on ordering them from lowest to highest value. The rankings were then 
turned into quantiles and transformed using the inverse cumulative 
distribution function of the normal distribution. This leads to all tran-
scripts following the exact same distribution (that is, a standard normal 
with a mean of 0 and a standard deviation of 1 across all samples). All 
scripts used in this study for pre-processing are provided on Github 
(https://github.com/schultzelab/swarm_learning) and normalized and 
rank-transformed count matrices used for predictions are provided via 
FASTGenomics at https://beta.fastgenomics.org/p/swarm-learning.

X-ray dataset (dataset C). The National Institutes of Health (NIH) 
chest X-Ray dataset (Supplementary Information) was downloaded 
from https://www.kaggle.com/nih-chest-xrays/data32. To preproc-
ess the data, we used Keras (v.2.3.1) real-time data augmentation and 
generation APIs (keras.preprocessing.image.ImageDataGenerator 
and flow_from_dataframe). The following pre-processing arguments 
were used: height or width shift range (about 5%), random rotation 
range (about 5°), random zoom range (about 0.15), sample-wise centre 
and standard normalization. In addition, all images were resized to  

128 × 128 pixels from their original size of 1,024 × 1,024 pixels and 32 
images per batch were used for model training.

The Swarm Learning framework
SL builds on two proven technologies, distributed machine learning 
and blockchain (Supplementary Information). The SLL is a framework 
to enable decentralized training of machine learning models without 
sharing the data. It is designed to make it possible for a set of nodes—
each node possessing some training data locally—to train a common 
machine learning model collaboratively without sharing the training 
data. This can be achieved by individual nodes sharing parameters 
(weights) derived from training the model on the local data. This allows 
local measures at the nodes to maintain the confidentiality and pri-
vacy of the raw data. Notably, in contrast to many existing federated 
learning models, a central parameter server is omitted in SL. Detailed 
descriptions of the SLL, the architecture principles, the SL process, 
implementation, and the environment can be found in the Supple-
mentary Information.

Hardware architecture used for simulations
For all simulations provided in this project we used two HPE Apollo 
6500 Gen 10 servers, each with four Intel(R) Xeon(R) CPU E5-2698 v4 @ 
2.20 GHz, a 3.2-terabyte hard disk drive, 256 GB RAM, eight Tesla P100 
GPUs, a 1-GB network interface card for LAN access and an InfiniBand 
FDR for high speed interconnection and networked storage access. 
The Swarm network is created with a minimum of 3 up to a maximum 
of 32 training nodes, and each node is a docker container with access 
to GPU resources. Multiple experiments were run in parallel using this 
configuration.

Overall, we performed 16,694 analyses including 26 scenarios for 
AML, four scenarios for ALL, 13 scenarios for TB, one scenario for detec-
tion of atelectasis, effusion, and/or infiltration in chest X-rays, and 18 
scenarios for COVID-19 (Supplementary Information). We performed 
5–100 permutations per scenario and each permutation took approxi-
mately 30 min, which resulted in a total of 8,347 computer hours.

Computation and algorithms
Neural network algorithm. We leveraged a deep neural network with 
a sequential architecture as implemented in Keras (v 2.3.1)28. Keras is 
an open source software library that provides a Python interface to 
neural networks. The Keras API was developed with a focus on fast 
experimentation and is standard for deep learning researchers. The 
model, which was already available in Keras for R from the previous 
study3, has been translated from R to Python to make it compatible 
with the SLL (Supplementary Information). In brief, the neural network 
consists of one input layer, eight hidden layers and one output layer. 
The input layer is densely connected and consists of 256 nodes, a rec-
tified linear unit activation function and a dropout rate of 40%. From 
the first to the eighth hidden layer, nodes are reduced from 1,024 to 
64 nodes, and all layers contain a rectified linear unit activation func-
tion, a kernel regularization with an L2 regularization factor of 0.005 
and a dropout rate of 30%. The output layer is densely connected and 
consists of one node and a sigmoid activation function. The model is 
configured for training with Adam optimization and to compute the 
binary cross-entropy loss between true labels and predicted labels.

The model is used for training both the individual nodes and SL. The 
model is trained over 100 epochs, with varying batch sizes. Batch sizes 
of 8, 16, 32, 64 and 128 are used, depending on the number of training 
samples. The full code for the model is provided on Github (https://
github.com/schultzelab/swarm_learning/)

Least absolute shrinkage and selection operator (LASSO). SL is not re-
stricted to any particular classification algorithm. We therefore adapted 
the l1-penalized logistic regression3 to be used with the SLL in the form 
of a Keras single dense layer with linear activation. The regularization 
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parameter lambda was set to 0.01. The full code for the model is provided 
on Github (https://github.com/schultzelab/swarm_learning/)

Parameter tuning. For most scenarios, default settings were used 
without parameter tuning. For some of the scenarios we tuned model 
hyperparameters. For some scenarios we also tuned SL parameters to 
get better performance (for example, higher sensitivity) (Supplemen-
tary Table 8). For example, for AML (Fig. 2e, f, Extended Data Fig. 2), the 
dropout rate was reduced to 10% to get better performance. For AML 
(Fig. 2b), the dropout rate was reduced to 10% and the epochs increased 
to 300 to get better performance. We also used the adaptive_rv param-
eter in the SL API to adjust the merge frequency dynamically on the 
basis of model convergence, to improve the training time. For TB and 
COVID-19, the test dropout rate was reduced to 10% for all scenarios. For 
the TB scenarios (Extended Data Fig. 7f, g), the node_weightage param-
eter of the SL callback API was used to give more weight to nodes that 
had more case samples. Supplementary Table 8 provides a complete 
overview of all tuning parameters used.

Parameter merging. Different functions are available for parameter 
merging as a configuration of the Swarm API, which are then applied 
by the leader at every synchronization interval. The parameters can 
be merged as average, weighted average, minimum, maximum, or 
median functions.

In this Article, we used the weighted average, which is defined as
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in which PM is merged parameters, Pk is parameters from the kth node, 
Wk is the weight of the kth node, and n is the number of nodes partici-
pating in the merge process.

Unless stated otherwise, we used a simple average without weights to 
merge the parameter for neural networks and for the LASSO algorithm.

Quantification and statistical analysis
We evaluated binary classification model performance with sensitivity, 
specificity, accuracy, F1 score, and AUC metrics, which were determined 
for every test run. The 95% confidence intervals of all performance 
metrics were estimated using bootstrapping. For AML and ALL, 100 
permutations per scenario were run for each scenario. For TB, the per-
formance metrics were collected by running 10 to 50 permutations. For 
the X-ray images, 10 permutations were performed. For COVID-19 the 
performance metrics were collected by running 10 to 20 permutations 
for each scenario. All metrics are listed in Supplementary Tables 3, 4.

Differences in performance metrics were tested using the one-sided 
Wilcoxon signed rank test with continuity correction. All test results 
are provided in Supplementary Table 5.

To run the experiments, we used Python version 3.6.9 with Keras 
version 2.3.1 and TensorFlow version 2.2.0-rc2. We used scikit-learn 
library version 0.23.1 to calculate values for the metrics. Summary 
statistics and hypothesis tests were calculated using R version 3.5.2. 
Calculation of each metric was done as follows:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + FP + TN + FN

F1score =
2TP

FP + FN + 2TP

where TP is true positive, FP is false positive, TN is true negative and FN 
is false negative. The area under the ROC curve was calculated using 
the R package ROCR version 1.0-11.

No statistical methods were used to predetermine sample size. The 
experiments were not randomized, but permutations were performed. 
Investigators were not blinded to allocation during experiments and 
outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Processed data from datasets A1–A3 can be accessed from GEO via the 
superseries GSE122517 or the individual subseries GSE122505 (dataset 
A1), GSE122511 (dataset A2) and GSE122515 (dataset A3). Dataset B con-
sists of the following series, which can be accessed at GEO: GSE101705, 
GSE107104, GSE112087, GSE128078, GSE66573, GSE79362, GSE84076, 
and GSE89403. Furthermore, it contains the data from the Rhineland 
Study. The Rhineland Study dataset falls under current General Data 
Protection Regulations (GDPR). Access to these data can be provided 
to scientists in accordance with the Rhineland Study’s Data Use and 
Access Policy. Requests to access the Rhineland Study’s dataset should 
be directed to RS-DUAC@dzne.de. New samples generated for data-
sets D and E have been deposited at the European Genome-Phenome 
Archive (EGA), which is hosted by the EBI and the CRG, under accession 
number EGAS00001004502. The healthy RNA-seq data included from 
Saarbrücken are available on application from PPMI through the LONI 
data archive at https://www.ppmi-info.org/data. Samples received from 
other public repositories are listed in Supplementary Table 2. Dataset 
C (NIH chest X-ray dataset) is available on Kaggle (https://www.kaggle.
com/nih-chest-xrays/data). Normalized log-transformed and rank 
transformed expressions as used for the predictions are available via 
FASTGenomics at https://beta.fastgenomics.org/p/swarm-learning.

Code availability
The code for preprocessing and for predictions can be found at GitHub 
(https://github.com/schultzelab/swarm_learning). The Swarm Learn-
ing software can be downloaded from https://myenterpriselicense.
hpe.com/. 

Acknowledgements We thank the Michael J. Fox Foundation and the Parkinson’s 
Progression Markers Initiative (PPMI) for contributing RNA-seq data; the CORSAAR study 
group for additional blood transcriptome samples; the collaborators who contributed to 
the collection of COVID-19 samples (B. Schlegelberger, I. Bernemann, J. C. Hellmuth,  
L. Jocham, F. Hanses, U. Hehr, Y. Khodamoradi, L. Kaldjob, R. Fendel, L. T. K. Linh,  
P. Rosenberger, H. Häberle and J. Böhne); and the NGS Competence Center Tübingen 
(NCCT), who contributed to the generation of data and the data sharing (in particular,  
J. Frick, M. Sonnabend, J. Geissert, A. Angelov, M. Pogoda, Y. Singh, S. Poths, S. Nahnsen 
and M. Gauder). This work was supported in part by the German Research Foundation (DFG) 
to J.L.S., O.R., P.R., P.N. (INST 37/1049-1, INST 216/981-1, INST 257/605-1, INST 269/768-1, INST 
217/988-1, INST 217/577-1, INST 217/1011-1, INST 217/1017-1 and INST 217/1029-1); under 
Germany’s Excellence Strategy (DFG – EXC2151 – 390873048); by the HGF Incubator  
grant sparse2big (ZT-I-0007); by EU projects SYSCID (grant 733100, P.R.) and ImmunoSep 
(grant 84722, J.L.S.); and by HPE to the DZNE for generating whole blood transcriptome 
data from patients with COVID-19. J.L.S. was further supported by the BMBF-funded 
excellence project Diet–Body–Brain (DietBB) (grant 01EA1809A), and J.L.S. and J.R. by 
NaFoUniMedCovid19 (FKZ: 01KX2021, project acronym COVIM). S.K. is supported by the 
Hellenic Institute for the Study of Sepsis. The clinical study in Greece was supported by the 
Hellenic Institute for the Study of Sepsis. E.J.G.-B. received funding from the FrameWork 7 
programme HemoSpec (granted to the National and Kapodistrian University of Athens), the 
Horizon2020 Marie-Curie Project European Sepsis Academy (676129, granted to the 
National and Kapodistrian University of Athens), and the Horizon 2020 European Grant 
ImmunoSep (granted to the Hellenic Institute for the Study of Sepsis). P.R. was supported 
by DFG ExC2167, a stimulus fund from Schleswig-Holstein and the DFG NGS Centre CCGA. 
The clinical study in Munich was supported by the Care-for-Rare Foundation. S.K.-H. is a 
scholar of the Reinhard-Frank Stiftung. D.P. is funded by the Hector Fellow Academy. The 
work was additionally supported by the Michael J. Fox Foundation for Parkinson’ Research 
under grant 14446. M.G.N. was supported by an ERC Advanced Grant (833247) and a 
Spinoza Grant of the Netherlands Organization for Scientific Research. R.B. and A.K. were 

https://github.com/schultzelab/swarm_learning/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122517
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122505
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122511
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE122515
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101705
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE101704
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE112087
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128078
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66573
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79362
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84076
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89403
https://ega-archive.org/datasets/EGAD00001006231
https://www.ppmi-info.org/data
https://www.kaggle.com/nih-chest-xrays/data
https://www.kaggle.com/nih-chest-xrays/data
https://beta.fastgenomics.org/p/swarm-learning
https://github.com/schultzelab/swarm_learning
https://myenterpriselicense.hpe.com/
https://myenterpriselicense.hpe.com/


Article
supported by Dr. Rolf M. Schwiete Stiftung, Staatskanzlei des Saarlandes and Saarland 
University. J.N. is supported by the DFG (SFB TR47, SPP1937) and the Hector Foundation 
(M88). M.A. is supported by COVIM: NaFoUniMedCovid19 (FKZ: 01KX2021). M. Becker is 
supported by the HGF  Helmholtz AI grant Pro-Gene-Gen (ZT-I-PF-5-23).

Author contributions The idea was conceived by H.S., K.L.S., E.L.G., and J.L.S. Subprojects and 
clinical studies were directed by H.S., K.L.S., K.H., M. Bitzer, J.R., S.K.-H., J.N., I.K., A.K., R.B., 
P.N., O.R., P.R., M.M.B.B., M. Becker, and J.L.S. The conceptualization was performed by S.W.-H., 
H.S., K.L.S., M. Becker, S.C., M.S.W., E.L.G., and J.L.S. Direction of the clinical programs, 
collection of clinical information and patient diagnostics were done by P.P., N.A.A., S.K., F.T.,  
M. Bitzer, C.H., D.P., U.B., F.K., T.F., P.S., C.L., M.A., J.R., B.K., M.S., J.H., S.S., S.K.-H., J.N., D.S., I.K., 
A.K., R.B., M.G.N., M.M.B.B., E.J.G.-B, and M.K. Patient samples were provided by P.P., N.A.A., 
S.K., F.T., M. Bitzer, S.O., N.C., C.H., D.P., U.B., F.K., T.F., P.S, C.L., M.A., J.R., B.K., M.S., J.H., S.S., 
S.K.-H., J.N., D.S., I.K., A.K., R.B., M.G.N., M.M.B.B., E.J.G.-B, and M.K. Laboratory experiments 
were performed by K.H., S.O., N.C., J.A., L.B., J.S.-S., E.D.D., M.K., and H.T. Primary data analysis 
and data QC were provided by S.W.-H., K.H., S.O., N.C., J.A., N.M., J.P.B., L.B., J.S.-S., E.D.D., 
M.N.-G., A.K., P.N., O.R., P.R., T.U., M. Becker, and J.L.S. Programming and coding for the current 
project were done by S.W.-H., Saikat Mukherjee, V.G., R.S., C.S., M.D., C.M.S., and M. Becker. The 
Swarm Learning environment was developed by S. Manamohan, Saikat Mukherjee, V.G., R.S., 
M.D., B.M., S.C., M.S.W., and E.L.G. Statistics and machine learning were done by S.W.-H., Saikat 
Mukherjee, V.G., R.S., M.D., F.T., Sach Mukherjee, S.C., E.L.G., and J.L.S. Data privacy and 
confidentiality concepts were developed by H.S., K.L.S., M. Backes, E.L.G., and J.L.S. Data 
interpretation was done by S.W.-H., H.S., Saikat Mukherjee, A.C.A., M. Becker, and J.L.S. Data 
were visualized by S.W.-H., H.S., M. Becker, and J.L.S. The original draft was written by S.W.-H., 
H.S., K.L.S., A.C.A., M. Becker, and J.L.S. Writing, reviewing and editing of revisions was done by 

S.W.-H., H.S., K.L.S., A.C.A., M.M.B.B., M. Becker, E.L.G., and J.L.S. Project management and 
administration were performed by H.S., K.L.S., A.D., A.C.A., M. Becker, and J.L.S. Funding was 
acquired by H.S., S.K., D.P., M.A., J.R., S.K.-H., J.N., A.K., R.B., P.N., O.R., P.R., M.G.N., F.T., E.J.G.-B, 
M.B., S.C., and J.L.S. All authors commented on the manuscript.

Funding Open access funding provided by Deutsches Zentrum für Neurodegenerative 
Erkrankungen e.V. (DZNE) in der Helmholtz-Gemeinschaft.

Competing interests H.S., K.L.S., S. Manamohan, Saikat Mukherjee, V.G., R.S., C.S., M.D., B.M, 
C.M.S., S.C., M.S.W. and E.L.G. are employees of Hewlett Packard Enterprise. Hewlett Packard 
Enterprise developed the SLL in its entirety as described in this work and has submitted 
multiple associated patent applications. E.J.G.-B. received honoraria from AbbVie USA, Abbott 
CH, InflaRx GmbH, MSD Greece, XBiotech Inc. and Angelini Italy and independent educational 
grants from AbbVie, Abbott, Astellas Pharma Europe, AxisShield, bioMérieux Inc, InflaRx 
GmbH, and XBiotech Inc. All other authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at 
https://doi.org/10.1038/s41586-021-03583-3.
Correspondence and requests for materials should be addressed to J.L.S.
Peer review information Nature thanks Dianbo Liu, Christopher Mason and the other, 
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer 
reports are available.
Reprints and permissions information is available at http://www.nature.com/reprints.

https://doi.org/10.1038/s41586-021-03583-3
http://www.nature.com/reprints


Extended Data Fig. 1 | Corresponding to Fig. 1. a, Overview of SL and the 
relationship to data privacy, confidentiality and trust. b, Concept and outline 
of the private permissioned blockchain network as a layer of the SL network. 
Each node consists of the blockchain, including the ledger and smart contract, 
as well as the SLL with the API to interact with other nodes within the network. 

c, The principles of the SL workflow once the nodes have been enrolled within 
the Swarm network via private permissioned blockchain contract and dynamic 
onboarding of new Swarm nodes. d, Application and middleware layer as part 
of the SL concept.
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Extended Data Fig. 2 | Scenario corresponding to Fig. 2b, c in datasets A1 
and A3. Main settings and representation of schema and data visualization as 
described in Fig. 2a. a, Evaluation of test accuracy for 100 permutations of the 
scenario shown in Fig. 2b. b, Evaluation of SL versus central model for the 
scenario shown in Fig. 2b for 100 permutations. c, Scenario with different 
prevalences of AML and numbers of samples at each training node. The test 
dataset has an even distribution. d, Evaluation of test accuracy for 100 
permutations of dataset A1 per node and SL. e, Evaluation using dataset A3  
for 100 permutations. f, Scenario with similar training set sizes per node  
but decreasing prevalence. The test dataset ratio is 1:1. g, Evaluation of test 
accuracy for 100 permutations of the scenario shown in Fig. 2c. h, Evaluation of 
SL versus central model of the scenario shown in Fig. 2c for 100 permutations.  

i, Evaluation of test accuracy over 100 permutations for dataset A1 with the 
scenario shown in f. j, Evaluation of test accuracy over 100 permutations for 
dataset A3 with the scenario shown in f. b, d, e, h–j, Box plots show 
representation of accuracy of 100 permutations performed for the 3 training 
nodes individually as well as the results obtained by SL. All samples are 
biological replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; 
whiskers, minimum and maximum values. Accuracy is defined for the 
independent fourth node used for testing only. Statistical differences between 
results derived by SL and all individual nodes including all permutations 
performed were calculated with one-sided Wilcoxon signed rank test with 
continuity correction; *P < 0.05, exact P values listed in Supplementary Table 5.



Extended Data Fig. 3 | Scenario to test for batch effects of siloed studies in 
datasets A1–A3 and scenario with multiple consortia. Main settings and 
representation of schema and data visualization are as in Fig. 2a. a, Scenario 
with training nodes coming from independent clinical studies for local models 
(left), central model (middle) and the Swarm network (right) and testing on a 
non-overlapping global test with samples from the same studies. b, Evaluation 
of test accuracy over 100 permutations for dataset A2 with the scenario shown 
in a (right) and Fig. 2d. c, Comparison of test accuracy between central model 
(a, middle) and SL (a, right). d, Comparison of test accuracy on the local test 
datasets (a, left) for 100 permutations. e, Evaluation of test accuracy of 
individual nodes versus SL over 100 permutations for dataset A1 when training 
nodes have data from independent clinical studies. f, Evaluation of test 
accuracy of individual nodes versus SL over 100 permutations for dataset A3 

when training nodes have data from independent clinical studies. g, Scenario 
with three consortia contributing training nodes and a fourth one providing 
the testing node. h, Evaluation of test accuracy for scenario shown in g over 100 
permutations for dataset A2. d–f, h, Box plots show representation of accuracy 
of all permutations performed for the 3 training nodes individually as well as 
the results obtained by SL (d only for local models). All samples are biological 
replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; whiskers, 
minimum and maximum values. Performance measures are defined for the 
independent fourth node used for testing only. Statistical differences between 
results derived by SL and all individual nodes including all permutations 
performed were calculated with one-sided Wilcoxon signed rank test with 
continuity correction; *P < 0.05, exact P values are listed in Supplementary 
Table 5.
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Extended Data Fig. 4 | Scenario corresponding to Fig. 2e in datasets A1 and 
A3 and scenario using different data generation methods in each training 
node. Main settings and representation of schema and data visualization are  
as in Fig. 2a. a, Scenario with even distribution of cases and controls at each 
training node and the test node, but different numbers of samples at each node 
and overall increase in numbers of samples. b, c, Test accuracy for evaluation of 
dataset A2 over 100 permutations. d, Comparison of central model with  
SL over 100 permutations. e, Test accuracy for evaluation of dataset A1 over  
99 permutations. f, Test accuracy for evaluation of dataset A3 over 100 
permutations. g, Scenario where datasets A1, A2, and A3 are assigned to a single 
training node each. h, Evaluation of test accuracy over 100 permutations.  
i, Comparison of the test accuracy of central model and SL over 98 

permutations. j, Scenario similar to g but where the nodes use datasets from 
different RNA-seq protocols. k, Evaluation of results for accuracy, AUC, 
sensitivity, and specificity over five permutations. d–f, i, k, Box plots show 
predictive performance over all permutations performed for the three training 
nodes individually as well as the results obtained by SL. All samples are 
biological replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; 
whiskers, minimum and maximum values. Performance measures are defined 
for the independent fourth node used for testing only. Statistical differences 
between results derived by SL and all individual nodes including all 
permutations performed were calculated with one-sided Wilcoxon signed rank 
test with continuity correction; *P < 0.05, exact P values listed in 
Supplementary Table 5.



Extended Data Fig. 5 | Scenario for ALL in dataset 2 and multi-class 
prediction and expansion of SL. Main settings are identical to what is 
described in Fig. 2a. Here cases are samples derived from patients with ALL, 
while all other samples are controls (including AML). a, Scenario for the 
detection of ALL in dataset A2. The training sets are evenly distributed among 
the nodes with varying prevalence at the testing node. Data from independent 
clinical studies are samples to each node, as described for AML in Fig. 2d.  
b, Evaluation of scenario in a for test accuracy over 100 permutations with a 
prevalence ratio of 1:1. c, Evaluation using a test dataset with prevalence ratio of 
10:100 over 100 permutations. d, Evaluation using a test dataset with 
prevalence ratio of 5:100 over 100 permutations. e, Evaluation using a test 
dataset with prevalence ratio of 1:100. f, Scenario for multi-class prediction of 
different types of leukaemia in dataset A2. Each node has a different 

prevalence. g, Test accuracy for the different types of leukaemia over 20 
permutations. h, Scenario that simulates 32 small Swarm nodes. i, Evaluation of 
test accuracy for the 32 nodes and the Swarm over 10 permutations.  
j, Development of accuracy over training epochs with addition of new nodes. 
b–e, g, i, Box plots show performance of all permutations performed for the 
training nodes individually as well as the results obtained by SL. All samples are 
biological replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; 
whiskers, minimum and maximum values. Performance measures are  
defined for the independent test node used for testing only. Statistical 
differences between results derived by SL and all individual nodes including all 
permutations performed were calculated with one-sided Wilcoxon signed rank 
test with continuity correction; *P < 0.05, exact P values listed in 
Supplementary Table 5.
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Extended Data Fig. 6 | Comparison of LASSO and neural networks.  
a, Scenario for training different models in the Swarm. b, Evaluation of a LASSO 
model for accuracy, sensitivity, specificity and F1 score over 100 permutations. 
c, Evaluation of a Neural Network model for accuracy, sensitivity, specificity 
and F1 score over 100 permutations. b, c, Box plots show performance of all 
permutations performed for the training nodes individually as well as the 
results obtained by SL. All samples are biological replicates. Centre dot, mean; 

box limits, 1st and 3rd quartiles; whiskers, minimum and maximum values. 
Performance measures are defined for the independent fourth node used for 
testing only. Statistical differences between results derived by SL and all 
individual nodes including all permutations performed were calculated with 
one-sided Wilcoxon signed rank test with continuity correction; *P < 0.05, 
exact P values listed in Supplementary Table 5.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Scenarios for detecting all TB versus controls and for 
detecting active TB with low prevalence at training nodes. Main settings are 
as in Fig. 2a. a, Different group settings used with assignment of latent TB to 
control or case. b, Left, evaluation of a scenario where active and latent TB are 
cases. The data are evenly distributed among the training nodes. Right, test 
accuracy, sensitivity and specificity for nodes, Swarm and a central model over 
10 permutations. c, Left, scenario similar to b but with latent TB as control. 
Right, test accuracy, sensitivity and specificity for nodes, Swarm and a central 
model over 10 permutations. d, Left, scenario with reduced prevalence at the 
test node. Right, test accuracy, sensitivity and specificity for nodes and Swarm 
over 10 permutations. e, Scenario with even distribution of cases and controls 
at each training node, where node 1 has a very small training set. The test 
dataset is evenly distributed. Right, test accuracy, sensitivity and specificity 
over 50 permutations. f, Left, scenario similar to e but with uneven distribution 
in the test node. Right, test accuracy, sensitivity and specificity over 50 

permutations. g, Scenario with each training node having a different 
prevalence. Three prevalence scenarios were used in the test dataset.  
h, Accuracy, sensitivity, specificity and F1 score over five permutations for 
testing set T1 as shown in g. i, As in h but with prevalence changed to 1:3 
cases:controls in the training set. j, As in h but with prevalence changed to 1:10 
cases:controls in the training set. b–f, h–j, Box plots show performance of all 
permutations performed for the training nodes individually as well as the 
results obtained by SL. All samples are biological replicates. Centre dot, mean; 
box limits, 1st and 3rd quartiles; whiskers, minimum and maximum values. 
Performance measures are defined for the independent fourth node used for 
testing only. Statistical differences between results derived by SL and all 
individual nodes including all permutations performed were calculated with 
one-sided Wilcoxon signed rank test with continuity correction; *P < 0.05, 
exact P values listed in Supplementary Table 5.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Baseline scenario for detecting patients with 
COVID-19 and scenario with reduced prevalence at training nodes. Main 
settings are as in Fig. 2a. a, Scenario for detecting COVID-19 with even training 
set distribution among nodes 1–3. Three testing sets with different prevalences 
were simulated. b, Accuracy, sensitivity, specificity and F1 score over 50 
permutations for scenario in a with a 22:25 case:control ratio. c, As in b for an 
11:25 ratio. d, As in b for a 1:44 ratio. e, Scenario with the same sample size at 
each training node, but prevalence decreasing from node 1 to node 3. There are 
two test datasets (f, g). f, Evaluation of scenario in e with 22:25 ratio at the test 
node over 50 permutations. g, Evaluation of scenario in e with reduced 
prevalence over 50 permutations. h, Scenario similar to e but with a steeper 
decrease in prevalence between nodes 1 and 3. i, Evaluation of scenario in h with 
a ratio of 37:50 at the test node over 50 permutations. j, Evaluation of scenario 
in h with a reduced prevalence compared to i over 50 permutations. k, Scenario 

as in Fig. 4a using a 1:5 ratio for cases and controls in the test dataset evaluated 
over 50 permutations. l, Scenario as in Fig. 4a using a 1:10 ratio in the test 
dataset to simulate detection in regions with new infections, evaluated over  
50 permutations. m, Performance of central models for k, l and Fig. 4b.  
n, Loss function of training and validation loss over 100 training epochs.  
b–d, f, g, i–m, Box plots show performance of all permutations performed for 
the training nodes individually as well as the results obtained by SL. All samples 
are biological replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; 
whiskers, minimum and maximum values. Performance measures are defined 
for the independent fourth node used for testing only. Statistical differences 
between results derived by SL and all individual nodes including all 
permutations performed were calculated with one-sided Wilcoxon signed rank 
test with continuity correction; *P < 0.05, exact P values listed in 
Supplementary Table 5.



Extended Data Fig. 9 | Scenario with reduced prevalence in training and 
test datasets and multi-centre scenario at a four-node setting. Main 
settings as in Fig. 2a. a, Scenario with prevalences from 10% at node 1 to 3% at 
node 4. There are three test datasets (b–d) with decreasing prevalence and 
increasing total sample size. b, Evaluation of scenario in a with 111:100 ratio 
over 50 permutations. c, Evaluation of scenario in a with 1:4 ratio and increased 
sample number of the test dataset over 50 permutations. d, Evaluation of 
scenario in a with 1:10 prevalence and increased sample number of the test 
dataset over 50 permutations. e, Dataset properties for the participating cities 
E1–E8, indicating case:control ratio and demographic properties. f, AUC, 
accuracy, sensitivity, specificity and F1 score over 20 permutations for 
scenario that uses E1–E6 as training nodes and E7 as external test node.  
g, Evaluation of a multi-city scenario where a medical centre (in each row) 

serves as a test node. The AUC for each training node and the SL is shown for  
20 permutations. h, Multi-city scenario. Only three nodes (E1–E3) are used for 
training and the external test node E4 uses data from a different sequencing 
facility. AUC, accuracy, sensitivity and specificity as well as the confusion 
matrix for one prediction. b–d, f, g, Box plots show performance of all 
permutations performed for the training nodes individually as well as the 
results obtained by SL. All samples are biological replicates. Centre dot, mean; 
box limits, 1st and 3rd quartiles; whiskers, minimum and maximum values. 
Performance measures are defined for the independent fourth node used for 
testing only. Statistical differences between results derived by SL and all 
individual nodes including all permutations performed were calculated with 
one-sided Wilcoxon signed rank test with continuity correction; *P < 0.05, 
exact P values listed in Supplementary Table 5.
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Extended Data Fig. 10 | Scenarios for testing different factors and scenario 
for testing disease severity. Main settings as in Fig. 2a. a, Top, scenario to test 
influence of sex with three training nodes. Training node 1 has only male cases, 
node 2 has only female cases. Training node 3 and the test node have a 50%/50% 
split. Bottom, accuracy, sensitivity, specificity and F1 score for each training 
node and the Swarm in 10 permutations. b, Top, scenario to test influence of 
age with three training nodes. Training node 1 only has cases younger than 
65 years, node 2 only has cases older than 65 years. Training node 3 and the test 
node have a 50%/50% split of cases above and below 65 years. Bottom, accuracy, 
sensitivity, specificity and F1 score for each training node and the Swarm in 10 
permutations. c, Top, scenario to test influence of co-infections with three 
training nodes. Training node 1 has only cases with co-infections, node 2 has no 
cases with co-infections. Training node 3 and the test node have a 50%/50% 
split. Bottom, accuracy, sensitivity, specificity and F1 score for each training 
node and the Swarm in 10 permutations. d, Prediction setting. Severe cases of 

COVID-19 are cases, mild cases of COVID-19 and healthy donors are controls.  
e, Left, scenario to test influence of disease severity with three training nodes. 
Training node 1 has 20% mild or healthy and 80% severe cases, node 3 has 40% 
mild or healthy and 60% severe cases. Training node 2 and the test node have 
30% mild or healthy and 70% severe cases. Right, accuracy, sensitivity, 
specificity and F1 score for each training node and the Swarm for 10 
permutations. a–c, e, Box plots show performance all permutations performed 
for the training nodes individually as well as the results obtained by SL. All 
samples are biological replicates. Centre dot, mean; box limits, 1st and 3rd 
quartiles; whiskers, minimum and maximum values. Performance measures 
are defined for the independent fourth node used for testing only. Statistical 
differences between results derived by SL and all individual nodes including all 
permutations performed were calculated with one-sided Wilcoxon signed rank 
test with continuity correction; *P < 0.05, exact P values listed in 
Supplementary Table 5.
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