567 research outputs found

    Tightening the belt: Constraining the mass and evolution in SDC335

    Get PDF
    Recent ALMA observations identified one of the most massive star-forming cores yet observed in the Milky Way; SDC335-MM1, within the infrared dark cloud SDC335.579-0.292. Along with an accompanying core MM2, SDC335 appears to be in the early stages of its star formation process. In this paper we aim to constrain the properties of the stars forming within these two massive millimetre sources. Observations of SDC335 at 6, 8, 23 and 25GHz were made with the ATCA. We report the results of these continuum measurements, which combined with archival data, allow us to build and analyse the spectral energy distributions (SEDs) of the compact sources in SDC335. Three HCHII regions within SDC335 are identified, two within the MM1 core. For each HCHII region, a free-free emission curve is fit to the data allowing the derivation of the sources' emission measure, ionising photon flux and electron density. Using these physical properties we assign each HCHII region a ZAMS spectral type, finding two protostars with characteristics of spectral type B1.5 and one with a lower limit of B1-B1.5. Ancillary data from infrared to mm wavelength are used to construct free-free component subtracted SEDs for the mm-cores, allowing calculation of the bolometric luminosities and revision of the previous gas mass estimates. The measured luminosities for the two mm-cores are lower than expected from accreting sources displaying characteristics of the ZAMS spectral type assigned to them. The protostars are still actively accreting, suggesting that a mechanism is limiting the accretion luminosity, we present the case for two different mechanisms capable of causing this. Finally, using the ZAMS mass values as lower limit constraints, a final stellar population for SDC335 was synthesised finding SDC335 is likely to be in the process of forming a stellar cluster comparable to the Trapezium Cluster and NGC6334 I(N).Comment: 10 pages, 5 figures. Accepted for publication in A&

    The initial conditions of stellar protocluster formation. II. A catalogue of starless and protostellar clumps embedded in IRDCs in the Galactic longitude range 15<l<55

    Get PDF
    We present a catalogue of starless and protostellar clumps associated with infrared dark clouds (IRDCs) in a 40 degrees wide region of the inner Galactic Plane (b<1). We have extracted the far-infrared (FIR) counterparts of 3493 IRDCs with known distance in the Galactic longitude range 15<l<55 and searched for the young clumps using Hi-GAL, the survey of the Galactic Plane carried out with the Herschel satellite. Each clump is identified as a compact source detected at 160, 250 and 350 mum. The clumps have been classified as protostellar or starless, based on their emission (or lack of emission) at 70 mum. We identify 1723 clumps, 1056 (61%) of which are protostellar and 667 (39%) starless. These clumps are found within 764 different IRDCs, 375 (49%) of which are only associated with protostellar clumps, 178 (23%) only with starless clumps, and 211 (28%) with both categories of clumps. The clumps have a median mass of 250 M_sun and range up to >10^4$ M_sun in mass and up to 10^5 L_sun in luminosity. The mass-radius distribution shows that almost 30% of the starless clumps identified in this survey could form high-mass stars, however these massive clumps are confined in only ~4% of the IRDCs. Assuming a minimum mass surface density threshold for the formation of high-mass stars, the comparison of the numbers of massive starless clumps and those already containing embedded sources suggests an upper limit lifetime for the starless phase of 10^5 years for clumps with a mass M>500 M_sun.Comment: accepted for publication in MNRAS. Online catalogues available soon, please contact the authors if intereste

    A possible observational bias in the estimation of the virial parameter in virialized clumps

    Full text link
    The dynamics of massive clumps, the environment where massive stars originate, is still unclear. Many theories predict that these regions are in a state of near-virial equilibrium, or near energy equi-partition, while others predict that clumps are in a sub-virial state. Observationally, the majority of the massive clumps are in a sub-virial state with a clear anti-correlation between the virial parameter αvir\alpha_{vir} and the mass of the clumps McM_{c}, which suggests that the more massive objects are also the more gravitationally bound. Although this trend is observed at all scales, from massive clouds down to star-forming cores, theories do not predict it. In this work we show how, starting from virialized clumps, an observational bias is introduced in the specific case where the kinetic and the gravitational energies are estimated in different volumes within clumps and how it can contribute to the spurious αvir−Mc\alpha_{vir}-M_{c} anti-correlation in these data. As a result, the observed effective virial parameter α~eff<αvir\tilde{\alpha}_{eff}<\alpha_{vir}, and in some circumstances it might not be representative of the virial state of the observed clumps.Comment: A&A letter, accepte

    Massive 70 micron quiet clumps I: evidence of embedded low/intermediate-mass star formation activity

    Get PDF
    Massive clumps, prior to the formation of any visible protostars, are the best candidates to search for the elusive massive starless cores. In this work we investigate the dust and gas properties of massive clumps selected to be 70 micron quiet, therefore good starless candidates. Our sample of 18 clumps has masses 300 < M < 3000 M_sun, radius 0.54 < R < 1.00 pc, surface densities Sigma > 0.05 g cm^-2 and luminosity/mass ratio L/M < 0.3. We show that half of these 70 micron quiet clumps embed faint 24 micron sources. Comparison with GLIMPSE counterparts shows that 5 clumps embed young stars of intermediate stellar mass up to ~5.5 M_sun. We study the clump dynamics with observations of N2H+ (1-0), HNC (1-0) and HCO+ (1-0) made with the IRAM 30m telescope. Seven clumps have blue-shifted spectra compatible with infall signatures, for which we estimate a mass accretion rate 0.04 < M_dot < 2.0 x 10^-3 M_sun yr^-1, comparable with values found in high-mass protostellar regions, and free-fall time of the order of t_ff = 3 x 10^5 yr. The only appreciable difference we find between objects with and without embedded 24 micron sources is that the infall rate appears to increase from 24 micron dark to 24 micron bright objects. We conclude that all 70 micron quiet objects have similar properties on clump scales, independently of the presence of an embedded protostar. Based on our data we speculate that the majority, if not all of these clumps may already embed faint, low-mass protostellar cores. If these clumps are to form massive stars, this must occur after the formation of these lower mass stars.Comment: 44 pages, 11 Figures. Accepted for publication in MNRA

    The initial conditions for stellar protocluster formation

    Get PDF
    Context. Galactic plane surveys of pristine molecular clouds are key for establishing a Galactic-scale view of star formation. For this reason, an unbiased sample of infrared dark clouds in the 10◦ < |l| < 65◦, |b| < 1◦ region of the Galactic plane was built using Spitzer 8 µm extinction. However, intrinsic fluctuations in the mid-infrared background can be misinterpreted as foreground clouds. Aims. The main goal of this study is to disentangle real clouds in the Spitzer Dark Cloud (SDC) catalogue from artefacts due to fluctuations in the mid-infrared background. Methods. We constructed H2 column density maps at ∼1811 resolution using the 160 µm and 250 µm data from the Herschel Galactic plane survey Hi-GAL. We also developed an automated detection scheme that confirms the existence of a SDC through its association with a peak on these Herschel column density maps. Detection simulations, along with visual inspection of a small sub-sample of SDCs, have been performed to get more insight into the limitations of our automated identification scheme. Results. Our analysis shows that 76(±19)% of the catalogued SDCs are real. This fraction drops to 55(±12)% for clouds with angular diameters larger than ∼1 arcmin. The contamination of the PF09 catalogue by large spurious sources reflects the large uncertainties associated to the construction of the 8 µm background emission, a key stage in identiying SDCs. A comparison of the Herschel confirmed SDC sample with the BGPS and ATLASGAL samples shows that SDCs probe a unique range of cloud properties, reaching down to more compact and lower column density clouds than any of these two (sub-)millimetre Galactic plane surveys. Conclusions. Even though about half of the large SDCs are spurious sources, the vast majority of the catalogued SDCs do have a Herschel counterpart. The Herschel-confirmed sample of SDCs offers a unique opportunity to study the earliest stages of both low- and high-mass star formation across the Galaxy

    Influence of protostellar outflows on star and protoplanetary disk formation in a massive star-forming clump

    Full text link
    Context. Due to the presence of magnetic fields, protostellar jets or outflows are a natural consequence of accretion onto protostars. They are expected to play an important role for star and protoplanetary disk formation. Aims. We aim to determine the influence of outflows on star and protoplanetary disk formation in star forming clumps. Methods. Using RAMSES, we perform the first magnetohydrodynamics calculation of massive star-forming clumps with ambipolar diffusion, radiative transfer including the radiative feedback of protostars and protostellar outflows while systematically resolving the disk scales. We compare it to a model without outflows. Results. We find that protostellar outflows have a significant impact on both star and disk formation. They provide additional turbulent and magnetic support to the clump, with typical velocities of a few 10 km/s, impact the disk temperatures, and reduce the accretion rate onto the protostars. While they promote a more numerous stellar population, we do not find that they control the mass scale of the stellar IMF. We find, however, that they have an influence on the high-mass end and the shape of the stellar IMF. Conclusions. Protostellar outflows appear to have a significant influence on both star and disk formation and should therefore be included in realistic simulations of star-forming environments.Comment: Submitted at A&A as a letter to the Editor; Comments are welcom

    Deuteration in infrared dark clouds

    Get PDF
    Much of the dense gas in molecular clouds has a filamentary structure but the detailed structure and evolution of this gas is poorly known. We have observed 54 cores in infrared dark clouds (IRDCs) using N2H+ (1−0) and (3−2) to determine the kinematics of the densest material, where stars will form. We also observed N2D+ (3−2) towards 29 of the brightest peaks to analyse the level of deuteration which is an excellent probe of the quiescent of the early stages of star formation. There were 13 detections of N2D+ (3−2). This is one of the largest samples of IRDCs yet observed in these species. The deuteration ratio in these sources ranges between 0.003 and 0.14. For most of the sources the material traced by N2D+ and N2H+ (3−2) still has significant turbulent motions, however three objects show subthermal N2D+ velocity dispersion. Surprisingly the presence or absence of an embedded 70μm source shows no correlation with the detection of N2D+ (3−2), nor does it correlate with any change in velocity dispersion or excitation temperature. Comparison with recent models of deuteration suggest evolutionary time-scales of these regions of several free-fall times or less

    Genetic counseling during COVID-19 pandemic: Tuscany experience

    Get PDF
    Background: COVID-19 outbreak prompted health centres to reorganize their clinical and surgical activity. In this paper, we show how medical genetics department's activity, in our tertiary pediatric hospital, has changed due to pandemic. Methods: We stratified all our scheduled visits, from March 9th through April 30th, and assessed case-by-case which genetic consultations should be maintained as face-to-face visit, or postponed/switched to telemedicine. Results: Out of 288 scheduled appointments, 60 were prenatal consultations and 228 were postnatal visits. We performed most of prenatal consultations as face-to-face visits, as women would have been present in the hospital to perform other procedures in addition to our consult. As for postnatal care, we suspended all outpatient first visits and opted for telemedicine for selected follow-up consultations: interestingly, 75% of our patients’ parents revealed that they would have cancelled the appointment themselves for the fear to contract an infection. Conclusions: Spread of COVID-19 in Italy forced us to change our working habits. Given the necessity to optimize healthcare resources and minimize the risk of in-hospital infections, we experienced the benefits of telegenetics. Current pandemic made us familiar with telemedicine, laying the foundations for its application to deal with the increasing number of requests in clinical genetics

    PIK3CA-Related Overgrowth Spectrum From Diagnosis to Targeted Therapy: A Case of CLOVES Syndrome Treated With Alpelisib

    Get PDF
    PIK3CA-related overgrowth spectrum (PROS) is an umbrella term referring to various clinical entities, which share the same pathogenetic mechanism. These conditions are caused by somatic gain-of-function mutations in PIK3CA, which encodes the 110-kD catalytic α subunit of PI3K (p110α). These PIK3CA mutations occur as post-zygotic events and lead to a gain of function of PI3K, with consequent constitutional activation of the downstream cascades (e.g., AKT/mTOR pathway), involved in cellular proliferation, survival and growth, as well as in vascular development in the embryonic stage. PIK3CA-related cancers and PROS share almost the same PIK3CA mutational profile, with about 80% of mutations occurring at three hotspots, E542, E545, and H1047. These hotspot mutations show the most potent effect on enzymatic activation of PI3K and consequent downstream biological responses. If present at the germinal level, these gain-of-function mutations would be lethal to the embryo, therefore we only see them in the mosaic state. The common clinical denominator of PROS disorders is that they are sporadic conditions, presenting with congenital or early childhood onset overgrowth with a typical mosaic distribution. However, the severity of PROS is highly variable, ranging from localized and apparently isolate overgrowth to progressive and extensive lipomatous overgrowth associated with life-threatening vascular malformations, as seen in CLOVES syndrome. Traditional therapeutic approaches, such as sclerotherapy and surgical debulking, are often not curative in PROS patients, leading to a recrudescence of the overgrowth in the treated area. Specific attention has been recently paid to molecules that are used and studied in the oncogenic setting and that are targeted on specific alterations of the pathway PI3K/AKT/mTOR. In June 2018, Venot et al. showed the effect of Alpelisib (BYL719), a specific inhibitor for the p110α subunit of PI3K, in patients with PROS disorders who had severe or life-threatening complications and were not sensitive to any other treatment. In these cases, dramatic anatomical and functional improvements occurred in all patients across many types of affected organ. Molecular testing in PROS patients is a crucial step in providing the conclusive diagnosis and then the opportunity for tailored therapy. The somatic nature of this group of diseases makes challenging to reach a molecular diagnosis, requiring deep sequencing methods that have to be performed on DNA extracted from affected tissue. Moreover, even analyzing the DNA extracted from affected tissue there is no guarantee to succeed in detection of the casual somatic mutation, since the affected tissue itself is highly heterogeneous and biopsy approaches can be burdened by incorrect sampling or inadequate tissue sample. We present an 8-year-old girl with CLOVES syndrome, born with a large cystic lymphangioma involving the left hemithorax and flank, multiple lipomas, and hypertrophy of the left foot and leg. She developed severe scoliosis. Many therapeutic approaches have been attempted, including Sildenafil treatment, scleroembolization, laser therapy, and multiple debulking surgeries, but none of these were of benefit to our patient's clinical status. She then started treatment with Rapamycin from May 2019, without significant improvement in both vascular malformation and leg hypertrophy. A high-coverage Whole Exome Sequencing analysis performed on DNA extracted from a skin sample showed a mosaic gain-of-function variant in the PIK3CA gene (p.H1047R, 11% of variant allele frequency). Once molecular confirmation of our clinical suspicion was obtained, after a multidisciplinary evaluation, we decided to discontinue Sirolimus and start targeted therapy with Alpelisib (50 mg/day). We noticed a decrease in fibroadipose overgrowth at the dorsal level, an improvement in in posture and excellent tolerability. The treatment is still ongoing

    Variations of the spectral index of dust emissivity from Hi-GAL observations of the Galactic plane

    Get PDF
    Original article can be found at: http://www.aanda.org/ Copyright The European Southern ObservatoryContext. Variations in the dust emissivity are critical for gas mass determinations derived from far-infrared observations, but also for separating dust foreground emission from the Cosmic Microwave Background (CMB). Hi-GAL observations allow us for the first time to study the dust emissivity variations in the inner regions of the Galactic plane at resolution below 1°. Aims. We present maps of the emissivity spectral index derived from the combined Herschel PACS 160 μm, SPIRE 250 μm, 350 μm, and 500 μm data, and the IRIS 100 μm data, and we analyze the spatial variations of the spectral index as a function of dust temperature and wavelength in the two science demonstration phase Hi-GAL fields, centered at l = 30° and l = 59°. Methods. Applying two different methods, we determine both dust temperature and emissivity spectral index between 100 and 500 μm, at an angular resolution (θ) of 4'. Results. Combining both fields, the results show variations of the emissivity spectral index in the range 1.8–2.6 for temperatures between 14 and 23 K. The median values of the spectral index are similar in both fields, i.e. 2.3 in the range 100–500 μm, while the median dust temperatures are equal to 19.1 K and 16.0 K in the l = 30° and l = 59° field, respectively. Statistically, we do not see any significant deviations in the spectra from a power law emissivity between 100 and 500 μm. We confirm the existence of an inverse correlation between the emissivity spectral index and dust temperature, found in previous analyses.Peer reviewe
    • …
    corecore