141 research outputs found

    A core genome multi-locus sequence typing scheme for Streptococcus uberis: an evolution in typing a genetically diverse pathogen

    Get PDF
    Streptococcus uberis is a globally endemic and poorly controlled cause of bovine mastitis impacting the sustainability of the modern dairy industry. A core genome was derived from 579 newly sequenced S. uberis isolates, along with 305 publicly available genome sequences of S. uberis isolated from 11 countries around the world and used to develop a core genome multi-locus sequence typing (cgMLST) scheme. The S. uberis core genome comprised 1475 genes, and these were used to identify 1447 curated loci that were indexed into the cgMLST scheme. This was able to type 1012 of 1037 (>97ā€Šā€Š%) isolates used and differentiated the associated sequences into 932 discrete core genome sequence types (cgSTs). Analysis of the phylogenetic relationships of cgSTs revealed no clear clustering of isolates based on metadata such as disease status or year of isolation. Geographical clustering of cgSTs was limited to identification of a UK-centric clade, but cgSTs from UK isolates were also dispersed with those originating from other geographical regions across the entire phylogenetic topology. The cgMLST scheme offers a new tool for the detailed analysis of this globally important pathogen of dairy cattle. Initial analysis has re-emphasized and exemplified the genetically diverse nature of the global population of this opportunistic pathogen

    Identification of single nucleotide polymorphisms in the bovine Toll-like receptor 1 gene and association with health traits in cattle

    Get PDF
    Bovine mastitis remains the most common and costly disease of dairy cattle worldwide. A complementary control measure to herd hygiene and vaccine development would be to selectively breed cattle with greater resistance to mammary infection. Toll-like receptor 1 (TLR1) has an integral role for the initiation and regulation of the immune response to microbial pathogens, and has been linked to numerous inflammatory diseases. The objective of this study was to investigate whether single nucleotide polymorphisms (SNPs) within the bovine TLR1 gene (boTLR1) are associated with clinical mastitis (CM)

    A core genome multi-locus sequence typing scheme for Streptococcus uberis: an evolution in typing a genetically diverse pathogen

    Get PDF
    Streptococcus uberis is a globally endemic and poorly controlled cause of bovine mastitis impacting the sustainability of the modern dairy industry. A core genome was derived from 579 newly sequenced S. uberis isolates, along with 305 publicly available genome sequences of S. uberis isolated from 11 countries around the world and used to develop a core genome multi-locus sequence typing (cgMLST) scheme. The S. uberis core genome comprised 1475 genes, and these were used to identify 1447 curated loci that were indexed into the cgMLST scheme. This was able to type 1012 of 1037 (>97 %) isolates used and differentiated the associated sequences into 932 discrete core genome sequence types (cgSTs). Analysis of the phylogenetic relationships of cgSTs revealed no clear clustering of isolates based on metadata such as disease status or year of isolation. Geographical clustering of cgSTs was limited to identification of a UK-centric clade, but cgSTs from UK isolates were also dispersed with those originating from other geographical regions across the entire phylogenetic topology. The cgMLST scheme offers a new tool for the detailed analysis of this globally important pathogen of dairy cattle. Initial analysis has re-emphasized and exemplified the genetically diverse nature of the global population of this opportunistic pathogen

    Functional rescue of REP1 following treatment with PTC124 and novel derivative PTC-414 in human choroideremia fibroblasts and the nonsense-mediated zebrafish model

    Get PDF
    Choroideremia (CHM) is an X-linked chorioretinal dystrophy that is caused by mutations within a single gene, CHM Currently no effective treatment exists for these patients. Since over 30% of patients harbour nonsense mutations in CHM, nonsense suppression therapy using translational readthrough inducing drugs may provide functional rescue of REP1, thus attenuating progressive sight loss. Here, we employed two CHM model systems to systematically test the efficacy and safety of ataluren (PTC124) and its novel analog PTC-414: (1) the chm(ru848) zebrafish, the only nonsense mutation animal model of CHM harbouring a TAA nonsense mutation, and (2) a primary human fibroblast cell line from a CHM patient harbouring a TAG nonsense mutation. PTC124 or PTC-414 treatment of chm(ru848) embryos led to a āˆ¼2.0-fold increase in survival, prevented the onset of retinal degeneration with reduced oxidative stress and apoptosis, increased rep1 protein by 23.1% (PTC124) and 17.2% (PTC-414) and restored biochemical function as confirmed through in vitro prenylation assays (98ā€‰Ā±ā€‰2% [PTC124] and 68ā€‰Ā±ā€‰5% [PTC-414]). In CHM(Y42X/y) fibroblasts, there was a recovery of prenylation activity following treatment with either PTC124 (42ā€‰Ā±ā€‰5%) or PTC-414 (36ā€‰Ā±ā€‰11%), although an increase in REP1 protein was not detected in these cells, in contrast to the zebrafish model. This comprehensive study on the use of PTC124 and PTC-414 as successful nonsense suppression agents for the treatment of CHM highlights the translational potential of these drugs for inherited retinal disease

    Two TIR-like domain containing proteins in a newly emerging zoonotic Staphylococcus aureus strain sequence type 398 are potential virulence factors by impacting on the host innate immune response

    Get PDF
    Staphylococcus aureus, sequence type (ST) 398, is an emerging pathogen and the leading cause of livestock-associated methicillin-resistant Staphylococcus aureus infections in Europe and North America. This strain is characterised by high promiscuity in terms of host species and also lacks several traditional S. aureus virulence factors. This does not however explain the apparent ease with which it crosses species-barriers. Recently, TIR-domain containing proteins (Tcps) inhibitng the innate immune response were identified in some Gram-negative bacteria. Here we report the presence of two proteins, S. aureus TIR-like Protein 1 (SaTlp1) and S. aureus TIR-like Protein 2 (SaTlp2), expressed by ST398 which contain Domain of Unknown Function 1863 (DUF1863), similar to the Toll/IL-1 receptor (TIR) domain. In contrast to the Tcps in Gram-negative bacteria, our data suggest that SaTlp1 and SaTlp2 increase activation of the transcription factor NF-ĪŗB as well as downstream pro-inflammatory cytokines and immune effectors. To assess the role of both proteins as potential virulence factors knock-out mutants were created. These showed the potential for a slightly increased survival rate in a murine infectious model compared to the wild-type strain at one dose, but the data did not reach level of significance. Our data suggest that both proteins may act as factors contributing to the enhanced ability of ST398 to cross species-barriers

    Bovine Neonatal Monocytes Display Phenotypic Differences Compared With Adults After Challenge With the Infectious Abortifacient Agent Neospora caninum

    Get PDF
    The neonatal period represents a window of susceptibility for ruminants given the abundance of infectious challenges in their environment. Maternal transfer of immunity does not occur in utero but post-parturition, however this does not compensate for potential deficits in the cellular compartment. Here we present a cellular and transcriptomic study to investigate if there is an age-related difference in the monocyte response in cattle during intra-cellular protozoan infection. We utilized Neospora caninum, an obligate intracellular protozoan parasite that causes abortion and negative economic impacts in cattle worldwide, to study these responses. We found neonatal animals had a significant greater percentage of CD14+ monocytes with higher CD80 cell surface expression. Adult monocytes harbored more parasites compared to neonatal monocytes; additionally greater secretion of IL-1Ī² was observed in neonates. Microarray analysis revealed neonates have 535 genes significantly upregulated compared to adult with 23 upregulated genes. Biological pathways involved in immune response were evaluated and both age groups showed changes in the upregulation of tyrosine phosphorylation of STAT protein and JAK-STAT cascade pathways. However, the extent to which these pathways were upregulated in neonates was much greater. Our findings suggest that neonates are more resistant to cellular invasion with protozoan parasites and that the magnitude of the responses is related to significant changes in the JAK-STAT network

    A paradox in bacterial pathogenesis: Activation of the local macrophage inflammasome is required for virulence of streptococcus uberis

    Get PDF
    Ā© 2020 by the authors. Licensee MDPI, Basel, Switzerland. Streptococcus uberis is a common cause of intramammary infection and mastitis in dairy cattle. Unlike other mammary pathogens, S. uberis evades detection by mammary epithelial cells, and the hostā€“pathogen interactions during early colonisation are poorly understood. Intramammary challenge of dairy cows with S. uberis (strain 0140J) or isogenic mutants lacking the surface-anchored serine protease, SUB1154, demonstrated that virulence was dependent on the presence and correct location of this protein. Unlike the wild-type strain, the mutant lacking SUB1154 failed to elicit IL-1Ī² from ex vivo CD14+ cells obtained from milk (bovine mammary macrophages, BMM), but this response was reinstated by complementation with recombinant SUB1154; the protein in isolation elicited no response. Production of IL-1Ī² was ablated in the presence of various inhibitors, indicating dependency on internalisation and activation of NLRP3 and caspase-1, consistent with inflammasome activation. Similar transcriptomic changes were detected in ex vivo BMM in response to the wild-type or the SUB1154 deletion mutant, consistent with S. uberis priming BMM, enabling the SUB1154 protein to activate inflammasome maturation in a transcriptionally independent manner. These data can be reconciled in a novel model of pathogenesis in which, paradoxically, early colonisation is dependent on the innate response to the initial infection

    Sortase anchored proteins of Streptococcus uberis play major roles in the pathogenesis of bovine mastitis in dairy cattle

    Get PDF
    Streptococcus uberis, strain 0140J, contains a single copy sortase A (srtA), encoding a transamidase capable of covalently anchoring specific proteins to peptidoglycan. Unlike the wild-type, an isogenic mutant carrying an inactivating ISS1 insertion within srtA was only able to infect the bovine mammary gland in a transient fashion. For the first 24 h post challenge, the srtA mutant colonised at a similar rate and number to the wild type strain, but unlike the wild type did not subsequently colonise in higher numbers. Similar levels of host cell infiltration were detected in response to infection with both strains, but only in those mammary quarters infected with the wild type strain were clinical signs of disease evident. Mutants that failed to express individual sortase substrate proteins (sub0135, sub0145, sub0207, sub0241, sub0826, sub0888, sub1095, sub1154, sub1370, and sub1730) were isolated and their virulence determined in the same challenge model. This revealed that mutants lacking sub0145, sub1095 and sub1154 were attenuated in cattle. These data demonstrate that a number of sortase anchored proteins each play a distinct, non-redundant and important role in pathogenesis of S. uberis infection within the lactating bovine mammary gland

    The applied development of a tiered multilocus sequence typing (MLST) scheme for Dichelobacter nodosus

    Get PDF
    Dichelobacter nodosus (D. nodosus) is the causative pathogen of ovine footrot, a disease that has a significant welfare and financial impact on the global sheep industry. Previous studies into the phylogenetics of D. nodosus have focused on Australia and Scandinavia, meaning the current diversity in the United Kingdom (U.K.) population and its relationship globally, is poorly understood. Numerous epidemiological methods are available for bacterial typing; however, few account for whole genome diversity or provide the opportunity for future application of new computational techniques. Multilocus sequence typing (MLST) measures nucleotide variations within several loci with slow accumulation of variation to enable the designation of allele numbers to determine a sequence type. The usage of whole genome sequence data enables the application of MLST, but also core and whole genome MLST for higher levels of strain discrimination with a negligible increase in experimental cost. An MLST database was developed alongside a seven loci scheme using publically available whole genome data from the sequence read archive. Sequence type designation and strain discrimination was compared to previously published data to ensure reproducibility. Multiple D. nodosus isolates from U.K. farms were directly compared to populations from other countries. The U.K. isolates define new clades within the global population of D. nodosus and predominantly consist of serogroups A, B and H, however serogroups C, D, E, and I were also found. Thescheme is publically available at https://pubmlst.org/dnodosus/
    • ā€¦
    corecore