57 research outputs found

    Investigating the feasibility of using transcranial direct current stimulation to enhance fluency in people who stutter

    Get PDF
    Developmental stuttering is a disorder of speech fluency affecting 1% of the adult population. Long-term reductions in stuttering are difficult for adults to achieve with behavioural therapies. We investigated whether a single session of transcranial direct current stimulation (TDCS) could improve fluency in people who stutter (PWS). In separate sessions, either anodal TDCS (1 mA for 20 min) or sham stimulation was applied over the left inferior frontal cortex while PWS read sentences aloud. Fluency was induced during the stimulation period by using choral speech, that is, participants read in unison with another speaker. Stuttering frequency during sentence reading, paragraph reading and conversation was measured at baseline and at two outcome time points: immediately after the stimulation period and 1 h later. Stuttering was reduced significantly at both outcome time points for the sentence-reading task, presumably due to practice, but not during the paragraph reading or conversation tasks. None of the outcome measures were significantly modulated by anodal TDCS. Although the results of this single-session study showed no significant TDCS-induced improvements in fluency, there were some indications that further research is warranted. We discuss factors that we believe may have obscured the expected positive effects of TDCS on fluency, such as heterogeneity in stuttering severity for the sample and variations across sessions. Consideration of such factors may inform future studies aimed at determining the potential of TDCS in the treatment of developmental stuttering

    Cigarette smoking, genetic polymorphisms and colorectal cancer risk: the Fukuoka Colorectal Cancer Study

    Get PDF
    Background: It is uncertain whether smoking is related to colorectal cancer risk. Cytochrome P-450 CYP1A1, glutathione-S-transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1) are important enzymes in the metabolism of tobacco carcinogens, and functional genetic polymorphisms are known for these enzymes. We investigated the relation of cigarette smoking and related genetic polymorphisms to colorectal cancer risk, with special reference to the interaction between smoking and genetic polymorphism. Methods: We used data from the Fukuoka Colorectal Cancer Study, a population-based case-control study, including 685 cases and 778 controls who gave informed consent to genetic analysis. Interview was conducted to assess lifestyle factors, and DNA was extracted from buffy coat. Results: In comparison with lifelong nonsmokers, the odds ratios (OR) of colorectal cancer for <400, 400-799 and β‰₯800 cigarette-years were 0.65 (95 % confidence interval [CI], 0.45-0.89), 1.16 (0.83-1.62) and 1.14 (0.73-1.77), respectively. A decreased risk associated with light smoking was observed only for colon cancer, and rectal cancer showed an increased risk among those with β‰₯400 cigarette-years (OR 1.60, 95 % CI 1.04-2.45). None of the polymorphisms under study was singly associated with colorectal cancer risk. Of the gene-gene interactions studied, the composite genotype of CYP1A1*2A or CYP1A1*2C and GSTT1 polymorphisms was associated with a decreased risk of colorecta

    Error-dependent modulation of speech-induced auditory suppression for pitch-shifted voice feedback

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The motor-driven predictions about expected sensory feedback (efference copies) have been proposed to play an important role in recognition of sensory consequences of self-produced motor actions. In the auditory system, this effect was suggested to result in suppression of sensory neural responses to self-produced voices that are predicted by the efference copies during vocal production in comparison with passive listening to the playback of the identical self-vocalizations. In the present study, event-related potentials (ERPs) were recorded in response to upward pitch shift stimuli (PSS) with five different magnitudes (0, +50, +100, +200 and +400 cents) at voice onset during active vocal production and passive listening to the playback.</p> <p>Results</p> <p>Results indicated that the suppression of the N1 component during vocal production was largest for unaltered voice feedback (PSS: 0 cents), became smaller as the magnitude of PSS increased to 200 cents, and was almost completely eliminated in response to 400 cents stimuli.</p> <p>Conclusions</p> <p>Findings of the present study suggest that the brain utilizes the motor predictions (efference copies) to determine the source of incoming stimuli and maximally suppresses the auditory responses to unaltered feedback of self-vocalizations. The reduction of suppression for 50, 100 and 200 cents and its elimination for 400 cents pitch-shifted voice auditory feedback support the idea that motor-driven suppression of voice feedback leads to distinctly different sensory neural processing of self vs. non-self vocalizations. This characteristic may enable the audio-vocal system to more effectively detect and correct for unexpected errors in the feedback of self-produced voice pitch compared with externally-generated sounds.</p

    Weak Responses to Auditory Feedback Perturbation during Articulation in Persons Who Stutter: Evidence for Abnormal Auditory-Motor Transformation

    Get PDF
    Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [Ξ΅]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (~150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands

    Risk Factors for Colorectal Cancer in Patients with Multiple Serrated Polyps: A Cross-Sectional Case Series from Genetics Clinics

    Get PDF
    Patients with multiple serrated polyps are at an increased risk for developing colorectal cancer (CRC). Recent reports have linked cigarette smoking with the subset of CRC that develops from serrated polyps. The aim of this work therefore was to investigate the association between smoking and the risk of CRC in high-risk genetics clinic patients presenting with multiple serrated polyps. Methods and Findings We identified 151 Caucasian individuals with multiple serrated polyps including at least 5 outside the rectum, and classified patients into non-smokers, current or former smokers at the time of initial diagnosis of polyposis. Cases were individuals with multiple serrated polyps who presented with CRC. Controls were individuals with multiple serrated polyps and no CRC. Multivariate logistic regression was performed to estimate associations between smoking and CRC with adjustment for age at first presentation, sex and co-existing traditional adenomas, a feature that has been consistently linked with CRC risk in patients with multiple serrated polyps. CRC was present in 56 (37%) individuals at presentation. Patients with at least one adenoma were 4 times more likely to present with CRC compared with patients without adenomas (OR = 4.09; 95%CI 1.27 to 13.14; P = 0.02). For females, the odds of CRC decreased by 90% in current smokers as compared to never smokers (OR = 0.10; 95%CI 0.02 to 0.47; P = 0.004) after adjusting for age and adenomas. For males, there was no relationship between current smoking and CRC. There was no statistical evidence of an association between former smoking and CRC for both sexes. Conclusion A decreased odds for CRC was identified in females with multiple serrated polyps who currently smoke, independent of age and the presence of a traditional adenoma. Investigations into the biological basis for these observations could lead to non-smoking-related therapies being developed to decrease the risk of CRC and colectomy in these patients.Daniel D. Buchanan, Kevin Sweet, Musa Drini, Mark A. Jenkins, Aung Ko Win, Dallas R. English, Michael D. Walsh, Mark Clendenning, Diane M. McKeone, Rhiannon J. Walters, Aedan Roberts, Sally-Ann Pearson, Erika Pavluk, John L. Hopper, Michael R. Gattas, Jack Goldblatt, Jill George, Graeme K. Suthers, Kerry D. Phillips, Sonja Woodal, Julie Arnold, Kathy Tucker, Amanda Muir, Michael Field, Sian Greening, Steven Gallinger, Renee Perrier, John A. Baron, John D. Potter, Robert Haile, Wendy Franke, Albert de la Chapelle, Finlay Macrae, Christophe Rosty, Neal I. Walker, Susan Parry and Joanne P. Youn

    Classification of Types of Stuttering Symptoms Based on Brain Activity

    Get PDF
    Among the non-fluencies seen in speech, some are more typical (MT) of stuttering speakers, whereas others are less typical (LT) and are common to both stuttering and fluent speakers. No neuroimaging work has evaluated the neural basis for grouping these symptom types. Another long-debated issue is which type (LT, MT) whole-word repetitions (WWR) should be placed in. In this study, a sentence completion task was performed by twenty stuttering patients who were scanned using an event-related design. This task elicited stuttering in these patients. Each stuttered trial from each patient was sorted into the MT or LT types with WWR put aside. Pattern classification was employed to train a patient-specific single trial model to automatically classify each trial as MT or LT using the corresponding fMRI data. This model was then validated by using test data that were independent of the training data. In a subsequent analysis, the classification model, just established, was used to determine which type the WWR should be placed in. The results showed that the LT and the MT could be separated with high accuracy based on their brain activity. The brain regions that made most contribution to the separation of the types were: the left inferior frontal cortex and bilateral precuneus, both of which showed higher activity in the MT than in the LT; and the left putamen and right cerebellum which showed the opposite activity pattern. The results also showed that the brain activity for WWR was more similar to that of the LT and fluent speech than to that of the MT. These findings provide a neurological basis for separating the MT and the LT types, and support the widely-used MT/LT symptom grouping scheme. In addition, WWR play a similar role as the LT, and thus should be placed in the LT type

    The role of the cerebellum in adaptation: ALE meta‐analyses on sensory feedback error

    Get PDF
    It is widely accepted that unexpected sensory consequences of self‐action engage the cerebellum. However, we currently lack consensus on where in the cerebellum, we find fine‐grained differentiation to unexpected sensory feedback. This may result from methodological diversity in task‐based human neuroimaging studies that experimentally alter the quality of self‐generated sensory feedback. We gathered existing studies that manipulated sensory feedback using a variety of methodological approaches and performed activation likelihood estimation (ALE) meta‐analyses. Only half of these studies reported cerebellar activation with considerable variation in spatial location. Consequently, ALE analyses did not reveal significantly increased likelihood of activation in the cerebellum despite the broad scientific consensus of the cerebellum's involvement. In light of the high degree of methodological variability in published studies, we tested for statistical dependence between methodological factors that varied across the published studies. Experiments that elicited an adaptive response to continuously altered sensory feedback more frequently reported activation in the cerebellum than those experiments that did not induce adaptation. These findings may explain the surprisingly low rate of significant cerebellar activation across brain imaging studies investigating unexpected sensory feedback. Furthermore, limitations of functional magnetic resonance imaging to probe the cerebellum could play a role as climbing fiber activity associated with feedback error processing may not be captured by it. We provide methodological recommendations that may guide future studies

    Resting-State Brain Activity in Adult Males Who Stutter

    Get PDF
    Although developmental stuttering has been extensively studied with structural and task-based functional magnetic resonance imaging (fMRI), few studies have focused on resting-state brain activity in this disorder. We investigated resting-state brain activity of stuttering subjects by analyzing the amplitude of low-frequency fluctuation (ALFF), region of interest (ROI)-based functional connectivity (FC) and independent component analysis (ICA)-based FC. Forty-four adult males with developmental stuttering and 46 age-matched fluent male controls were scanned using resting-state fMRI. ALFF, ROI-based FCs and ICA-based FCs were compared between male stuttering subjects and fluent controls in a voxel-wise manner. Compared with fluent controls, stuttering subjects showed increased ALFF in left brain areas related to speech motor and auditory functions and bilateral prefrontal cortices related to cognitive control. However, stuttering subjects showed decreased ALFF in the left posterior language reception area and bilateral non-speech motor areas. ROI-based FC analysis revealed decreased FC between the posterior language area involved in the perception and decoding of sensory information and anterior brain area involved in the initiation of speech motor function, as well as increased FC within anterior or posterior speech- and language-associated areas and between the prefrontal areas and default-mode network (DMN) in stuttering subjects. ICA showed that stuttering subjects had decreased FC in the DMN and increased FC in the sensorimotor network. Our findings support the concept that stuttering subjects have deficits in multiple functional systems (motor, language, auditory and DMN) and in the connections between them

    Inhibition of cancer cell invasion and metastasis by genistein

    Get PDF
    Genistein is a small, biologically active flavonoid that is found in high amounts in soy. This important compound possesses a wide variety of biological activities, but it is best known for its ability to inhibit cancer progression. In particular, genistein has emerged as an important inhibitor of cancer metastasis. Consumption of genistein in the diet has been linked to decreased rates of metastatic cancer in a number of population-based studies. Extensive investigations have been performed to determine the molecular mechanisms underlying genistein’s antimetastatic activity, with results indicating that this small molecule has significant inhibitory activity at nearly every step of the metastatic cascade. Reports have demonstrated that, at high concentrations, genistein can inhibit several proteins involved with primary tumor growth and apoptosis, including the cyclin class of cell cycle regulators and the Akt family of proteins. At lower concentrations that are similar to those achieved through dietary consumption, genistein can inhibit the prometastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the transforming growth factor (TGF)-Ξ² signaling pathway. Several in vitro findings have been corroborated in both in vivo animal studies and in early-phase human clinical trials, demonstrating that genistein can both inhibit human cancer metastasis and also modulate markers of metastatic potential in humans, respectively. Herein, we discuss the variety of mechanisms by which genistein regulates individual steps of the metastatic cascade and highlight the potential of this natural product as a promising therapeutic inhibitor of metastasis
    • …
    corecore