69 research outputs found

    Current Status of Monocyte Differentiation-Inducing (MDI) Factors Derived from Human Fetal Membrane Chorion Cells Undergoing Apoptosis after Influenza Virus Infection

    Get PDF
    Influenza virus infection induces apoptosis and the expression of a set of pro-inflammatory cytokine genes, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon (IFN)-β and IFN-γ, in cultured human fetal membrane chorion cells. Monocyte differentiation-inducing (MDI) activity in culture supernatants is simultaneously increased by the virus infection. The MDI activity is predominantly influenced by IL-6 molecule in culture supernatants, and partly by TNF-α and IFN-β, but not IFN-γ, molecules. The MDI factors are able to induce the mRNA expression of macrophage class A scavenger receptor (SR-A), which is one of adhesion and apoptotic cell-recognizing molecules, and gp91phox, which is a catalytic subunit of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme complex, on monocytic cells. As a result, monocytes are initiated to differentiate into well-matured macrophages capable of adhering and producing superoxide through NADPH oxidase. The matured macrophages, obtained from human monocytic leukemia THP-1 cells by the treatment with MDI factors, phagocytose apoptotic chorion cell debris resulting from the virus infection. Subsequent to phagocytosis, an abrupt increase of superoxide production by macrophages may occur. In this article, we summarize recent knowledge about the MDI factors derived from human fetal membrane chorion cells undergoing apoptosis after influenza virus infection, and discuss their possible pathological roles during pregnancy

    Perspective on Therapeutic Strategies of Leukemia Treatment — Focus on Arsenic Compounds

    Get PDF
    Leukemia is a type of cancer of the body’s blood-forming tissues, including the bone marrow and the lymphatic system. Treatments for leukemia are complex, depending upon the type of leukemia and other factors. Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia (AML) and accounts for approximately 10-15% of all cases of AML in adults. Arsenic and its compounds are widely distributed in the environment and have been used medicinally for over 2,000 years. In fact, investigators from China and the USA have demonstrated that treatment with ATO (As2O3, AsIII) results in complete remission in 90% of relapsed APL patients since mid-1990s. Moreover, As2S2 or As4S4, also known as realgar, has been gaining increasing attention and is traditionally used to treat certain types of hematological disorders including chronic myeloid leukemia (CML), AML, myelodysplastic syndrome (MDS) and MDS/AML in China. In this chapter, we first highlight the pharmacokinetics of ATO and realgar in leukemia patients and/or healthy volunteer. We will further summarize the detailed mechanisms underlying the cytocidal effects of these arsenic compounds. We also provide detailed insight into potential future clinical application of those promising candidates endowed with potent antitumor activities in view of combination with arsenic compounds

    The first Japanese biobank of patient‐derived pediatric acute lymphoblastic leukemia xenograft models

    Get PDF
    A lack of practical resources in Japan has limited preclinical discovery and testing of therapies for pediatric relapsed and refractory acute lymphoblastic leukemia (ALL), which has poor outcomes. Here, we established 57 patient-derived xenografts (PDXs) in NOD.Cg-Prkdcscidll2rgtm1Sug/ShiJic (NOG) mice and created a biobank by preserving PDX cells including three extramedullary relapsed ALL PDXs. We demonstrated that our PDX mice and PDX cells mimicked the biological features of relapsed ALL and that PDX models reproduced treatment-mediated clonal selection. Our PDX biobank is a useful scientific resource for capturing drug sensitivity features of pediatric patients with ALL, providing an essential tool for the development of targeted therapies

    An integrated expression atlas of miRNAs and their promoters in human and mouse

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution

    Antioxidant Therapy as a Potential Approach to Severe Influenza-Associated Complications

    No full text
    With the appearance of the novel influenza A (H1N1) virus 2009 strain we have experienced a new influenza pandemic and many patients have died from severe complications associated with this pandemic despite receiving intensive care. This suggests that a definitive medical treatment for severe influenza-associated complications has not yet been established. Many studies have shown that superoxide anion produced by macrophages infiltrated into the virus-infected organs is implicated in the development of severe influenza-associated complications. Selected antioxidants, such as pyrrolidine dithiocabamate, N-acetyl-L-cysteine, glutathione, nordihydroguaiaretic acid, thujaplicin, resveratrol, (+)-vitisin A, ambroxol, ascorbic acid, 5,7,4-trihydroxy-8-methoxyflavone, catechins, quercetin 3-rhamnoside, iso- quercetin and oligonol, inhibit the proliferation of influenza virus and scavenge superoxide anion. The combination of antioxidants with antiviral drugs synergistically reduces the lethal effects of influenza virus infections. These results suggest that an agent with antiviral and antioxidant activities could be a drug of choice for the treatment of patients with severe influenza-associated complications. This review article updates knowledge of antioxidant therapy as a potential approach to severe influenza-associated complications

    Possible Roles of Proinflammatory and Chemoattractive Cytokines Produced by Human Fetal Membrane Cells in the Pathology of Adverse Pregnancy Outcomes Associated with Influenza Virus Infection

    No full text
    Pregnant women are at an increased risk of influenza-associated adverse outcomes, such as premature delivery, based on data from the latest pandemic with a novel influenza A (H1N1) virus in 2009-2010. It has been suggested that the transplacental transmission of influenza viruses is rarely detected in humans. A series of our study has demonstrated that influenza virus infection induced apoptosis in primary cultured human fetal membrane chorion cells, from which a factor with monocyte differentiation-inducing (MDI) activity was secreted. Proinflammatory cytokines, such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-β, were identified as a member of the MDI factor. Influenza virus infection induced the mRNA expression of not only the proinflammatory cytokines but also chemoattractive cytokines, such as monocyte chemoattractant protein (MCP)-1, regulated on activation, normal T-cell expressed and secreted (RANTES), macrophage inflammatory protein (MIP)-1β, IL-8, growth-regulated oncogene (GRO)-α, GRO-β, epithelial cell-derived neutrophil-activating protein (ENA)-78, and interferon inducible protein (IP)-10 in cultured chorion cells. These cytokines are postulated to associate with human parturition. This paper, therefore, reviews (1) lessons from pandemic H1N1 2009 in pregnancy, (2) production of proinflammatory and chemoattractive cytokines by human fetal membranes and their functions in gestational tissues, and (3) possible roles of cytokines produced by human fetal membranes in the pathology of adverse pregnancy outcomes associated with influenza virus infection
    corecore