889 research outputs found

    A new lower bound approach for single-machine multicriteria scheduling

    Get PDF
    The concept of maximum potential improvement has played an important role in computing lower bounds for single-machine scheduling problems with composite objective functions that are linear in the job completion times. We introduce a new method for lower bound computation; objective splitting. We show that it dominates the maximum potential improvement method in terms of speed and quality

    Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe

    Get PDF
    This review describes environmental factors that influence severity of crop disease epidemics, especially in the UK and north-west Europe, in order to assess the effects of climate change on crop growth and yield and severity of disease epidemics. While work on some diseases, such as phoma stem canker of oilseed rape and fusarium ear blight of wheat, that combine crop growth, disease development and climate change models is described in detail, climate-change projections and predictions of the resulting biotic responses to them are complex to predict and detailed models linking climate, crop growth and disease development are not available for many crop-pathogen systems. This review uses a novel approach of comparing pathogen biology according to 'ecotype' (a categorization based on aspects such as epidemic type, dissemination method and infection biology), guided by detailed disease progress models where available to identify potential future research priorities for disease control. Consequences of projected climate change are assessed for factors driving elements of disease cycles of fungal pathogens (nine important pathogens are assessed in detail), viruses, bacteria and phytoplasmas. Other diseases classified according to 'ecotypes' were reviewed and likely changes in their severity used to guide comparable diseases about which less information is available. Both direct and indirect effects of climate change are discussed, with an emphasis on examples from the UK, and considered in the context of other factors that influence diseases and particularly emergence of new diseases, such as changes to farm practices and introductions of exotic material and effects of other environment changes such as elevated CO 2. Good crop disease control will contribute to climate change mitigation by decreasing greenhouse gas emissions from agriculture while sustaining production. Strategies for adaptation to climate change are needed to maintain disease control and crop yields in north-west Europe.Peer reviewe

    Comments on Noncommutative Sigma Models

    Get PDF
    We review the derivation of a noncommutative version of the nonlinear sigma model on \CPn and it's soliton solutions for finite θ\theta emphasizing the similarities it bears to the GMS scalar field theory. It is also shown that unlike the scalar theory, some care needs to be taken in defining the topological charge of BPS solitons of the theory due to nonvanishing surface terms in the energy functional. Finally it is shown that, like its commutative analogue, the noncommutative \CPn-model also exhibits a non-BPS sector. Unlike the commutative case however, there are some surprises in the noncommutative case that merit further study.Comment: 22 pages, 4 figures, LaTeX (JHEP3), Minor changes, Discussion expanded and references adde

    szinmü 4 felvonásban - írta Victorien Sardou - fordították Fai J. Béla és Makó Lajos - rendező Bihari

    Get PDF
    Vigszinház Debreczen, 1919 julius 25-én pénteken. Előadás kezdete 7 1/2 órakor.Debreceni Egyetem Egyetemi és Nemzeti Könyvtá

    S-Duality for Linearized Gravity

    Full text link
    We develope the analogue of S-duality for linearized gravity in (3+1)-dimensions. Our basic idea is to consider the self-dual (anti-self-dual) curvature tensor for linearized gravity in the context of the Macdowell-Mansouri formalism. We find that the strong-weak coupling duality for linearized gravity is an exact symmetry and implies small-large duality for the cosmological constant.Comment: 18 pages, Latex, to be published in Phys. Lett.

    The M Theory Five-Brane and the Heterotic String

    Get PDF
    Brane actions with chiral bosons present special challenges. Recent progress in the description of the two main examples -- the M theory five-brane and the heterotic string -- is described. Also, double dimensional reduction of the M theory five-brane on K3 is shown to give the heterotic string.Comment: 13 pages, latex, no figures; ICTP Conference Proceeding

    Membranes for Topological M-Theory

    Full text link
    We formulate a theory of topological membranes on manifolds with G_2 holonomy. The BRST charges of the theories are the superspace Killing vectors (the generators of global supersymmetry) on the background with reduced holonomy G_2. In the absence of spinning formulations of supermembranes, the starting point is an N=2 target space supersymmetric membrane in seven euclidean dimensions. The reduction of the holonomy group implies a twisting of the rotations in the tangent bundle of the branes with ``R-symmetry'' rotations in the normal bundle, in contrast to the ordinary spinning formulation of topological strings, where twisting is performed with internal U(1) currents of the N=(2,2) superconformal algebra. The double dimensional reduction on a circle of the topological membrane gives the strings of the topological A-model (a by-product of this reduction is a Green-Schwarz formulation of topological strings). We conclude that the action is BRST-exact modulo topological terms and fermionic equations of motion. We discuss the role of topological membranes in topological M-theory and the relation of our work to recent work by Hitchin and by Dijkgraaf et al.Comment: 22 pp, plain tex. v2: refs. adde

    BPS preons and the AdS-M-algebra

    Full text link
    We present here the AdS generalization of BPS preons, which were introduced as the hypothetical constituents of M-theory preserving all but one supersymmetries. Our construction, suggested by the relation of `lower dimensional preons' with higher spin theories, can be considered as a deformation of the M-algebraic description of the single supersymmetry broken by a preon, and provides another reason to identify the AdS generalization of the M-algebra, which we call the AdS-M-algebra, with osp(1|32).Comment: Plain latex, no figures, 19 pages minor corrections, one ref. added, as published in JHEP 04 (2008) 06

    Superparticle Models with Tensorial Central Charges

    Get PDF
    A generalization of the Ferber-Shirafuji formulation of superparticle mechanics is considered. The generalized model describes the dynamics of a superparticle in a superspace extended by tensorial central charge coordinates and commuting twistor-like spinor variables. The D=4 model contains a continuous real parameter a0a\geq 0 and at a=0 reduces to the SU(2,2|1) supertwistor Ferber-Shirafuji model, while at a=1 one gets an OSp(1|8) supertwistor model of ref. [1] (hep-th/9811022) which describes BPS states with all but one unbroken target space supersymmetries. When 0<a<1 the model admits an OSp(2|8) supertwistor description, and when a>1 the supertwistor group becomes OSp(1,1|8). We quantize the model and find that its quantum spectrum consists of massless states of an arbitrary (half)integer helicity. The independent discrete central charge coordinate describes the helicity spectrum. We also outline the generalization of the a=1 model to higher space-time dimensions and demonstrate that in D=3,4,6 and 10, where the quantum states are massless, the extra degrees of freedom (with respect to those of the standard superparticle) parametrize compact manifolds. These compact manifolds can be associated with higher-dimensional helicity states. In particular, in D=10 the additional ``helicity'' manifold is isomorphic to the seven-sphere.Comment: 32 pages, LATEX, no figure
    corecore