1,015 research outputs found

    Tools for Assessing Climate Impacts on Fish and Wildlife

    Get PDF
    Climate change is already affecting many fish and wildlife populations. Managing these populations requires an understanding of the nature, magnitude, and distribution of current and future climate impacts. Scientists and managers have at their disposal a wide array of models for projecting climate impacts that can be used to build such an understanding. Here, we provide a broad overview of the types of models available for forecasting the effects of climate change on key processes that affect fish and wildlife habitat (hydrology, fire, and vegetation), as well as on individual species distributions and populations. We present a framework for how climate-impacts modeling can be used to address management concerns, providing examples of model-based assessments of climate impacts on salmon populations in the Pacific Northwest, fire regimes in the boreal region of Canada, prairies and savannas in the Willamette Valley-Puget Sound Trough-Georgia Basin ecoregion, and marten Martes americana populations in the northeastern United States and southeastern Canada. We also highlight some key limitations of these models and discuss how such limitations should be managed. We conclude with a general discussion of how these models can be integrated into fish and wildlife management

    Testing for COVID-19 is Much More Effective When Performed Immediately Prior to Social Mixing

    Get PDF
    Objective: To quantify the utility of RT-PCR and rapid antigen tests in preventing post-arrival transmission based on timing of the pre-departure test.Methods: We derived analytical expressions to compute post-arrival transmission when no test is performed, and when either an RT-PCR or any of 18 rapid antigen tests is performed at specified times before arrival. We determined the diagnostic sensitivity of the rapid antigen tests by propagating their RT-PCR percent positive agreement onto known RT-PCR diagnostic sensitivity.Results: Depending on the rapid antigen test used, conducting a rapid antigen test immediately before departure reduces post-arrival transmission between 37.4% (95% CrI: 28.2%–40.7%) and 46.7% (95% CrI:40.0%–49.3%), compared to a 31.1% (95% CrI: 26.3%–33.5%) reduction using an RT-PCR 12 h before arrival. Performance of each rapid antigen test differed by diagnostic sensitivity over the course of disease. However, these differences were smaller than those engendered by testing too early.Conclusion: Testing closer to arrival—ideally on the day of arrival—is more effective at reducing post-arrival transmission than testing earlier. Rapid antigen tests perform the best in this application due to their short turnaround time

    Harnessing case isolation and ring vaccination to control Ebola.

    Get PDF
    As a devastating Ebola outbreak in West Africa continues, non-pharmaceutical control measures including contact tracing, quarantine, and case isolation are being implemented. In addition, public health agencies are scaling up efforts to test and deploy candidate vaccines. Given the experimental nature and limited initial supplies of vaccines, a mass vaccination campaign might not be feasible. However, ring vaccination of likely case contacts could provide an effective alternative in distributing the vaccine. To evaluate ring vaccination as a strategy for eliminating Ebola, we developed a pair approximation model of Ebola transmission, parameterized by confirmed incidence data from June 2014 to January 2015 in Liberia and Sierra Leone. Our results suggest that if a combined intervention of case isolation and ring vaccination had been initiated in the early fall of 2014, up to an additional 126 cases in Liberia and 560 cases in Sierra Leone could have been averted beyond case isolation alone. The marginal benefit of ring vaccination is predicted to be greatest in settings where there are more contacts per individual, greater clustering among individuals, when contact tracing has low efficacy or vaccination confers post-exposure protection. In such settings, ring vaccination can avert up to an additional 8% of Ebola cases. Accordingly, ring vaccination is predicted to offer a moderately beneficial supplement to ongoing non-pharmaceutical Ebola control efforts

    International Society of Sports Nutrition Position Stand:Probiotics

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO). Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications. Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent. Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown. The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components. Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes’ exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections. Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes. Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise. The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product’s shelf life, as measured by colony forming units (CFU) or live cells. Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    Quantitative Proteomic and Interaction Network Analysis of Cisplatin Resistance in HeLa Cells

    Get PDF
    Cisplatin along with other platinum based drugs are some of the most widely used chemotherapeutic agents. However drug resistance is a major problem for the successful chemotherapeutic treatment of cancer. Current evidence suggests that drug resistance is a multifactorial problem due to changes in the expression levels and activity of a wide number of proteins. A majority of the studies to date have quantified mRNA levels between drug resistant and drug sensitive cell lines. Unfortunately mRNA levels do not always correlate with protein expression levels due to post-transcriptional changes in protein abundance. Therefore global quantitative proteomics screens are needed to identify the protein targets that are differentially expressed in drug resistant cell lines. Here we employ a quantitative proteomics technique using stable isotope labeling with amino acids in cell culture (SILAC) coupled with mass spectrometry to quantify changes in protein levels between cisplatin resistant (HeLa/CDDP) and sensitive HeLa cells in an unbiased fashion. A total of 856 proteins were identified and quantified, with 374 displaying significantly altered expression levels between the cell lines. Expression level data was then integrated with a network of protein-protein interactions, and biological pathways to obtain a systems level view of proteome changes which occur with cisplatin resistance. Several of these proteins have been previously implicated in resistance towards platinum-based and other drugs, while many represent new potential markers or therapeutic targets

    Evaluating Approaches for Constructing Polygenic Risk Scores for Prostate Cancer in Men of African and European Ancestry

    Get PDF
    Genome-wide polygenic risk scores (GW-PRSs) have been reported to have better predictive ability than PRSs based on genome-wide significance thresholds across numerous traits. We compared the predictive ability of several GW-PRS approaches to a recently developed PRS of 269 established prostate cancer-risk variants from multi-ancestry GWASs and fine-mapping studies (PRS269). GW-PRS models were trained with a large and diverse prostate cancer GWAS of 107,247 cases and 127,006 controls that we previously used to develop the multi-ancestry PRS269. Resulting models were independently tested in 1,586 cases and 1,047 controls of African ancestry from the California Uganda Study and 8,046 cases and 191,825 controls of European ancestry from the UK Biobank and further validated in 13,643 cases and 210,214 controls of European ancestry and 6,353 cases and 53,362 controls of African ancestry from the Million Veteran Program. In the testing data, the best performing GW-PRS approach had AUCs of 0.656 (95% CI = 0.635-0.677) in African and 0.844 (95% CI = 0.840-0.848) in European ancestry men and corresponding prostate cancer ORs of 1.83 (95% CI = 1.67-2.00) and 2.19 (95% CI = 2.14-2.25), respectively, for each SD unit increase in the GW-PRS. Compared to the GW-PRS, in African and European ancestry men, the PRS269 had larger or similar AUCs (AUC = 0.679, 95% CI = 0.659-0.700 and AUC = 0.845, 95% CI = 0.841-0.849, respectively) and comparable prostate cancer ORs (OR = 2.05, 95% CI = 1.87-2.26 and OR = 2.21, 95% CI = 2.16-2.26, respectively). Findings were similar in the validation studies. This investigation suggests that current GW-PRS approaches may not improve the ability to predict prostate cancer risk compared to the PRS269 developed from multi-ancestry GWASs and fine-mapping

    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

    Get PDF
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction
    • 

    corecore