127 research outputs found

    Behavior of large-scale rectangular columns confined with FRP composites

    Get PDF
    This paper focuses on axially loaded, large-scale rectangular RC columns confined with fiber-reinforced polymer (FRP) wrapping. Experimental tests are conducted to obtain the stress-strain response and ultimate load for three field-size columns having different aspect ratios and/or corner radii. Effective transverse FRP failure strain and the effect of increasing confining action on the stress-strain behavior are examined. Existing strength models, the majority of which were developed for small-scale specimens, are applied to predict the structural response. Since some of them fail to adequately characterize the test data and others are complex and require significant calculation, a simple design-oriented model is developed. The new model is based on the confinement effectiveness coefficient, an aspect ratio coefficient, and a corner radius coefficient. It accurately predicts the axial ultimate strength of the large-scale columns at hand and, when applied to the small-scale columns studied by other investigators, produces reasonable results

    Effect of Supplementary Cementitious Materials on the Compressive Strength and Durability of Short-Term Cured Concrete

    Get PDF
    This research focuses on studying the effect different supplementary cementitious materials (silica fume, fly ash, slag, and their combinations) on strength and durability of concrete cured for a short period of time—14 days. This work primarily deals with the characteristics of these materials, including strength, durability, and resistance to wet and dry and freeze and thaw environments. Over 16 mixes were made and compared to the control mix. Each of these mixes was either differing in the percentages of the additives or was combinations of two or more additives. All specimens were moist cured for 14 days before testing or subjected to environmental exposure. The freeze–thaw and wet–dry specimens were also compared to the control mix. Results show that at 14 days of curing, the use of supplementary cementitious materials reduced both strength and freeze–thaw durability of concrete. The combination of 10% silica fume, 25% slag, and 15% fly ash produced high strength and high resistance to freeze–thaw and wet–dry exposures as compared to other mixes. This study showed that it is imperative to cure the concrete for an extended period of time, especially those with fly ash and slag, to obtain good strength and durability. Literature review on the use of different supplementary cementitious materials in concrete to enhance strength and durability was also reported

    Lunar In Situ Materials-Based Surface Structure Technology Development Efforts at NASA/MSFC

    Get PDF
    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them, including habitats, laboratories, berms, radiation shielding for surface reactors, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Surface Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and lessons learned will be presented, along with recommendations for future activities

    Assessing the efficiency of CFRP discrete confinement systems for concrete cylinders

    Get PDF
    Concrete columns requiring strengthening intervention always contain a certain percentage of steel hoops. Applying strips of wet lay-up carbon fiber reinforced polymer (CFRP) sheets in-between the existent steel hoops might, therefore, be an appropriate confinement technique with both technical and economic advantages, when full wrapping of a concrete column is taken as a basis of comparison. To assess the effectiveness of this discrete confinement strategy, circular cross section concrete elements confined by distinct arrangements of strips of CFRP sheet are submitted to a direct compression load up to the failure point. The influence of the width of the strip, distance between strips, number of CFRP layers per strip, CFRP stiffness and concrete strength class on the increase of the load carrying capacity and ductility of concrete columns, is evaluated. An analytical model is developed to predict the compressive stress-strain relationship of concrete columns confined by discrete and continuous CFRP arrangements. The main results of the experimental program are presented and analyzed and used to assess the model performance

    Effect of under-reinforcement on the flexural strength of corroded beams

    Get PDF
    Reinforced concrete beams are normally designed as under-reinforced to provide ductile behaviour i.e. the tensile moment of resistance, Mt(0) is less than the moment of resistance of the compressive zone, Mc. The degree of under-reinforcement (Mt(0)/Mc ratio) can depend upon the preferences of the designer in complying with design and construction constraints, codes and availability of steel reinforcement diameters and length. Mt(0)/Mc is further influenced during service life by corrosion which decreases Mt(0). The paper investigates the influence of Mt(0)/Mc on the residual flexural strength of corroded beams and determines detailing parameters (e.g. size and percentage of steel reinforcement, cover) on Mt(0)/Mc. Corroded reinforced concrete beams (100 mm · 150 mm deep) with varying Mt(0)/Mc ratios were tested in flexure. The results of the investigation were combined with the results of similar work by other researchers and show that beams with lower Mt(0)/Mc ratios suffer lower flexural strength loss when subjected to tensile reinforcement corrosion. Cover to the main steel does not directly influence Mt(0)/Mc and, thus, the residual flexural strength of corroded beams is not normally affected by increased cover. A simplified expression for estimating the residual strength of corroded beams is also given

    Continuous Concrete Beams Reinforced With CFRP Bars.

    Get PDF
    yesThis paper reports the testing of three continuously and two simply supported concrete beams reinforced with carbon fibre reinforced polymer (CFRP) bars. The amount of CFRP reinforcement in beams tested was the main parameter investigated. A continuous concrete beam reinforced with steel bars was also tested for comparison purposes. The ACI 440.1R-06 equations are validated against the beam test results. Test results show that increasing the CFRP reinforcement ratio of the bottom layer of simply and continuously supported concrete beams is a key factor in enhancing the load capacity and controlling deflection. Continuous concrete beams reinforced with CFRP bars exhibited a remarkable wide crack over the middle support that significantly influenced their behaviour. The load capacity and deflection of CFRP simply supported concrete beams are reasonably predicted using the ACI 440.1R-06 equations. However, the potential capabilities of these equations for predicting the load capacity and deflection of continuous CFRP reinforced concrete beams have been adversely affected by the de-bonding of top CFRP bars from concrete

    Optimized FRP Wrapping Schemes for Circular Concrete Columns under Axial Compression

    Get PDF
    This study investigates the behavior and failure modes of fiber-reinforced polymer (FRP) confined concrete wrapped with different FRP schemes, including fully wrapped, partially wrapped, and nonuniformly-wrapped concrete cylinders. By using the same amount of FRP, this study proposes a new wrapping scheme that provides a higher compressive strength and strain for FRP-confined concrete, in comparison with conventional fully wrapping schemes. A total of 33 specimens were cast and tested, with three of these specimens acting as reference specimens and the remaining specimens wrapped with different types of FRP (CFRP and GFRP) by different wrapping schemes. For specimens that belong to the descending branch type, the partially-wrapped specimens had a lower compressive strength but a higher axial strain as compared to the corresponding fully-wrapped specimens. In addition, the nonuniformly-wrapped specimens achieved both a higher compressive strength and axial strain in comparison with the fully-wrapped specimens. Furthermore, the partially-wrapping scheme changes the failure modes of the specimens and the angle of the failure surface. A new equation that can be used to predict the axial strain of concrete cylinders wrapped partially with FRP is proposed

    Study on Alternative Cargo Launch Options from the Lunar Surface

    Full text link
    In the future, there will be a need for constant cargo launches from Earth to Mars in order to build, and then sustain, a Martian base. Currently, chemical rockets are used for space launches. These are expensive and heavy due to the amount of necessary propellant. Nuclear thermal rockets (NTRs) are the next step in rocket design. Another alternative is to create a launcher on the lunar surface that uses magnetic levitation to launch cargo to Mars in order to minimize the amount of necessary propellant per mission. This paper investigates using nuclear power for six different cargo launching alternatives, as well as the orbital mechanics involved in launching cargo to a Martian base from the moon. Each alternative is compared to the other alternative launchers, as well as compared to using an NTR instead. This comparison is done on the basis of mass that must be shipped from Earth, the amount of necessary propellant, and the number of equivalent NTR launches. Of the options, a lunar coil launcher had a ship mass that is 12.7% less than the next best option and 17 NTR equivalent launches, making it the best of the presented six options

    Flexural Behavior of Continuous GFRP Reinforced Concrete Beams.

    Get PDF
    yesThe results of testing two simply and three continuously supported concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars are presented. The amount of GFRP reinforcement was the main parameter investigated. Over and under GFRP reinforcements were applied for the simply supported concrete beams. Three different GFRP reinforcement combinations of over and under reinforcement ratios were used for the top and bottom layers of the continuous concrete beams tested. A concrete continuous beam reinforced with steel bars was also tested for comparison purposes. The experimental results revealed that over-reinforcing the bottom layer of either the simply or continuously supported GFRP beams is a key factor in controlling the width and propagation of cracks, enhancing the load capacity, and reducing the deflection of such beams. Comparisons between experimental results and those obtained from simplified methods proposed by the ACI 440 Committee show that ACI 440.1R-06 equations can reasonably predict the load capacity and deflection of the simply and continuously supported GFRP reinforced concrete beams tested
    • …
    corecore