37 research outputs found

    The mediating role of innovation in the relationship between market orientation and university performance in Pakistan

    Get PDF
    Universities globally are going through a paradigm shift with a need to become more innovatively market-oriented to handle the issue of growing competition for funding, as well as attracting/retaining the international/local competent students and academicians. However, there appears to be a dearth of research on how such state of affairs could be addressed, particularly in the emerging economies like Pakistan. In the light of resource-based theory (RBT), as well as organizational-learning theory (OLT), literature suggests that market-orientation (MO) and innovation are to be the desirable unique resources, as well as the guiding philosophies, to enable universities for a more competitive performance. Hence, this study investigated how resources like marketorientation (MO), and innovation, can influence university performance (UP). The study also tested empirically the potential mediating effect of innovation on the MOUP relationship. In addition, how the dimensions of MO influenced the innovation and university performance (UP) were also tested empirically in the universities of Pakistan. Results of the PLS path modelling (with 369 respondents from the target public-sector universities) firstly confirmed significant effect of the “universal construct of MO” and two of its dimensions “the advising and mentoring, as well as the intelligencegeneration and response” on UP. However, one dimension of MO, which is the administration-leadership, was not significantly supported to directly influence the UP. Secondly, the study confirmed that there were significant direct effects of the “universal construct of MO”, as well as all of its dimensions, on innovation. Thirdly, the study also found that there was a significant effect of innovation on UP. Furthermore, the bootstrapping results found significant mediation of innovation between the MO-UP relationship. Hence, the results show that UP can be directly enhanced through MO and innovation. Even the use of innovation as a mediator can further strengthen the MO-UP relationship. Based on the findings, the study offers theoretical and practical implications, followed by its limitations and directions, for future research

    The Biochemical Toxin Arsenal from Ant Venoms

    No full text
    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents

    Biodiversité, biochimie et pharmacologie des peptides de venins de fourmis

    No full text
    Les venins sont des armes sophistiquées, utilisées par les organismes venimeux pour se défendre des prédateurs, ainsi que pour paralyser et tuer leurs proies. Mais dans la nature, le bien n’est jamais très loin du mal, les toxines venimeuses pouvant se révéler être des agents thérapeutiques efficaces. Les peptides de venins de fourmis ont donc été étudiés dans cette thèse afin de déterminer le potentiel de ces toxines pour la découverte de molécules thérapeutiques innovantes. A l’instar des autres venins d’insectes, les venins de fourmis restent peu étudiés, principalement en raison de la petite taille de ces insectes et des quantités limitées de venins disponibles. Cependant, les fourmis offrent l’avantage d’être des insectes sociaux très abondants dans tous les milieux terrestres. En collectant les venins de plusieurs individus, il est donc possible d’obtenir des quantités suffisantes de venin pour les analyses biochimiques et pharmacologiques.Afin d’assurer la reproductibilité des analyses, une identification taxonomique correcte est nécessaire. Dans cette optique, un outil de chimiotaxonomie a été développé durant cette thèse (permettant ainsi de regrouper les venins provenant de plusieurs colonies afin de compenser les faibles quantités de matériel biologique par individu ou par colonie).Ensuite, nous nous sommes intéressés aux facteurs écologiques impliqués dans la diversification des venins de fourmis. Pour cela, la toxicité et la composition des venins de fourmis ont été analysés en relation avec le polyéthisme, la spécialisation alimentaire et la spécialisation défensive.La diversité écologique des fourmis a amplement contribuée à la diversification des venins. En étudiant les venins de 82 espèces de fourmis, nous avons révélé la grande diversité structurale des toxines. Bien que la majorité des peptidomes sont composés par de petits peptides linéaires, des peptides structurés par des ponts disulfure ont été révélés dans de nombreux venins et constituent de nouvelles familles structurales de toxines.La purification de certains de ces peptides à ponts disulfure a permis leur caractérisation biochimique et l’évaluation de leur rôle biologique. Ainsi nous avons décrit un groupe de peptides neurotoxiques, baptisés les formicitoxines qui sont capables de bloquer les canaux calcium humains de type L. La commutatoxine est, quant à elle, un peptide avec un pont disulfure qui semble activer les récepteurs humains TRPV1 et TRPV3 et laisse supposer une implication dans l’induction de la douleur chez les mammifères.La grande diversité des peptides mise en évidence dans les venins, associée à la grande diversité écologique et taxonomique des fourmis, suggère que les venins de fourmis constituent un nouveau champ d’exploration prometteur pour la recherche de molécules thérapeutiques et insecticides. Les venins de fourmis s’ajoutent à la chimiothèque conséquente déjà représentée par les venins des autres animaux venimeux.Venoms are sophisticated weapons employed by venomous organisms to ward off predators, as well as to subdue and kill prey. However, in nature, good is never far from bad and venom toxins may prove to be efficient therapeutic agents. Ant venom peptides were investigated in the course of this thesis to evaluate their potential in the discovery of novel drugs. Like other insect venoms, ant venoms remain understudied, mainly due to the small size of individual ants and, so, the limited a mount of venom available. The ecological diversity of ants has largely contributed to venom diversification. By studying the venom peptidomes from 82 ant species, we have revealed the great structural diversity of the toxins. Although the majority of the peptidomes are comprised of small and linear peptides, peptides structured by disulfide bonds were also brought to light in numerous venoms and constitute novel structural classes of toxins. The purification of some of these disulfided peptides permitted their biochemical characterization and the assessment oft heir biological functions. The enormous peptide diversity revealed among venoms combined with the great ecological and taxonomical diversity of ants suggests that ant venoms constitute a promising new source in the search for both novel drugs and insecticides. Ant venom augments the vast bioactive molecules library represented by venoms from other venomous animals

    Intraspecific variations in the venom peptidome of the ant <em>Odontomachus haematodus</em> (formicidae: ponerinae) from French Guiana

    No full text
    International audienceAnt venoms are complex cocktails of toxins employed to subdue prey and to protect the colony from predators and microbial pathogens. Although the extent of ant venom peptide diversity remains largely unexplored, previous studies have revealed the presence of numerous bioactive peptides in most stinging ant venoms. We investigated the venom peptidome of the ponerine ant Odontomachus haematodus using LC-MS analysis and then verified whether the division of labor in the colonies and their geographical location are correlated with differences in venom composition. Our results reveal that O. haematodus venom is comprised of 105 small linear peptides. The venom composition does not vary between the different castes (i.e., nurses, foragers and queens), but an intraspecific variation in peptide content was observed, particularly when the colonies are separated by large distances. Geographical variation appears to increase the venom peptide repertoire of this ant species, demonstrating its intraspecific venom plasticity

    Phthalate pollution in an Amazonian rainforest

    No full text
    International audiencePhthalates are ubiquitous contaminants and endocrine-disrupting chemicals that can become trapped in the cuticles of insects, including ants which were recognized as good bioindicators for such pollution. Because phthalates have been noted in developed countries and because they also have been found in the Arctic, a region isolated from direct anthropogenic influence, we hypothesized that they are widespread. So, we looked for their presence on the cuticle of ants gathered from isolated areas of the Amazonian rainforest and along an anthropogenic gradient of pollution (rainforest vs. road sides vs. cities in French Guiana). Phthalate pollution (mainly di(2-ethylhexyl) phthalate (DEHP)) was higher on ants gathered in cities and along road sides than on those collected in the pristine rainforest, indicating that it follows a human-mediated gradient of disturbance related to the use of plastics and many other products that contain phthalates in urban zones. Their presence varied with the ant species; the cuticle of Solenopsis saevissima traps higher amount of phthalates than that of compared species. However, the presence of phthalates in isolated areas of pristine rainforests suggests that they are associated both with atmospheric particles and in gaseous form and are transported over long distances by wind, resulting in a worldwide diffusion. These findings suggest that there is no such thing as a "pristine" zone

    Ant cuticular response to phthalate pollution

    No full text
    International audiencePhthalates are common atmospheric contaminantsused in the plastic industry. Ants have been shown to constitutegood bioindicators of phthalate pollution. Hence,phthalates remain trapped on ant cuticles which are mostlycoated with long-chain hydrocarbons. In this study, we artificiallycontaminated Lasius niger ants with four phthalates:dibutyl phthalate (DBP), diisobutyl phthalate (DiBP), di(2-ethylhexyl) phthalate (DEHP), and benzyl butyl phthalate(BBP). The first three have previously been found on ants innature in Touraine (France), while the fourth has not. The fourphthalates disappeared rapidly (less than 5 days) from thecuticles of live ants. In contrast, on the cuticles of dead ants,DEHP quantities remained unchanged over time. These resultsindicate that phthalates are actively absorbed by thecuticles of live ants. Cuticular absorption of phthalates isnonspecific because eicosane, a nonnatural hydrocarbon onL. niger cuticle, was similarly absorbed. Ants are importantecological engineers and may serve as bioindicators of ecosystemhealth. We also suggest that ants and more generallyterrestrial arthropods may contribute to the removal ofphthalates from the local environmen

    Deciphering the Molecular Diversity of an Ant Venom Peptidome through a Venomics Approach

    No full text
    International audienceThe peptide toxins in the venoms of small invertebrates such as stinging ants have rarely been studied due to the limited amount of venom available per individual. We used a venomics strategy to identify the molecular diversity of the venom peptidome for the myrmicine ant Tetramorium bicarinatum. The methodology included (i) peptidomics, in which the venom peptides are sequenced through a de novo mass spectrometry approach or Edman degradation; (ii) transcriptomics, based on RT-PCR-cloning and DNA sequencing; and (iii) the data mining of the RNA-seq in the available transcriptome. Mass spectrometry analysis revealed about 2800 peptides in the venom. However, the de novo sequencing suggested that most of these peptides arose from processing or the artifactual fragmentations of full-length mature peptides. These peptides, called "myrmicitoxins", are produced by a limited number of genes. Thirty-seven peptide precursors were identified and classified into three superfamilies. These precursors are related to pilosulin, secapin or are new ant venom prepro-peptides. The mature myrmicitoxins display sequence homologies with antimicrobial, cytolytic and neurotoxic peptides. The venomics strategy enabled several post-translational modifications in some peptides such as O-glycosylation to be identified. This study provides novel insights into the molecular diversity and evolution of ant venoms
    corecore