76 research outputs found

    The gastrin and cholecystokinin receptors mediated signaling network : a scaffold for data analysis and new hypotheses on regulatory mechanisms

    Get PDF
    Abstract Background The gastrointestinal peptide hormones cholecystokinin and gastrin exert their biological functions via cholecystokinin receptors CCK1R and CCK2R respectively. Gastrin, a central regulator of gastric acid secretion, is involved in growth and differentiation of gastric and colonic mucosa, and there is evidence that it is pro-carcinogenic. Cholecystokinin is implicated in digestion, appetite control and body weight regulation, and may play a role in several digestive disorders. Results We performed a detailed analysis of the literature reporting experimental evidence on signaling pathways triggered by CCK1R and CCK2R, in order to create a comprehensive map of gastrin and cholecystokinin-mediated intracellular signaling cascades. The resulting signaling map captures 413 reactions involving 530 molecular species, and incorporates the currently available knowledge into one integrated signaling network. The decomposition of the signaling map into sub-networks revealed 18 modules that represent higher-level structures of the signaling map. These modules allow a more compact mapping of intracellular signaling reactions to known cell behavioral outcomes such as proliferation, migration and apoptosis. The integration of large-scale protein-protein interaction data to this literature-based signaling map in combination with topological analyses allowed us to identify 70 proteins able to increase the compactness of the map. These proteins represent experimentally testable hypotheses for gaining new knowledge on gastrin- and cholecystokinin receptor signaling. The CCKR map is freely available both in a downloadable, machine-readable SBML-compatible format and as a web resource through PAYAO ( http://sblab.celldesigner.org:18080/Payao11/bin/ ). Conclusion We have demonstrated how a literature-based CCKR signaling map together with its protein interaction extensions can be analyzed to generate new hypotheses on molecular mechanisms involved in gastrin- and cholecystokinin-mediated regulation of cellular processes

    Patient derived colonoids as drug testing platforms - Critical importance of oxygen concentration

    Get PDF
    Treatment of inflammatory bowel disease (IBD) is challenging, with a series of available drugs each helping only a fraction of patients. Patients may face time-consuming drug trials while the disease is active, thus there is an unmet need for biomarkers and assays to predict drug effect. It is well known that the intestinal epithelium is an important factor in disease pathogenesis, exhibiting physical, biochemical and immunologic driven barrier dysfunctions. One promising test system to study effects of existing or emerging IBD treatments targeting intestinal epithelial cells (IECs) is intestinal organoids (ā€œmini-gutsā€). However, the fact that healthy intestinal epithelium is in a physiologically hypoxic state has largely been neglected, and studies with intestinal organoids are mainly performed at oxygen concentration of 20%. We hypothesized that lowering the incubator oxygen level from 20% to 2% would recapitulate better the in vivo physiological environment of colonic epithelial cells and enhance the translational value of intestinal organoids as a drug testing platform. In the present study we examine the effects of the key IBD cytokines and drug targets TNF/IL17 on human colonic organoids (colonoids) under atmospheric (20%) or reduced (2%) O2. We show that colonoids derived from both healthy controls and IBD-patients are viable and responsive to IBD-relevant cytokines at 2% oxygen. Because chemokine release is one of the important immunoregulatory traits of the epithelium that may be fine-tuned by IBD-drugs, we also examined chemokine expression and release at different oxygen concentrations. We show that chemokine responses to TNF/IL17 in organoids display similarities to inflamed epithelium in IBD-patients. However, inflammation-associated genes induced by TNF/IL17 were attenuated at low oxygen concentration. We detected substantial oxygen-dependent differences in gene expression in untreated as well as TNF/IL17 treated colonoids in all donors. Further, for some of the IBD-relevant cytokines differences between colonoids from healthy controls and IBD patients were more pronounced in 2% O2 than 20% O2. Our results strongly indicate that an oxygen concentration similar to the in vivo epithelial cell environment is of essence in experimental pharmacology

    Functional studies on transfected cell microarray analysed by linear regression modelling

    Get PDF
    Transfected cell microarray is a promising method for accelerating the functional exploration of the genome, giving information about protein function in the living cell. The microarrays consist of clusters of cells (spots) overexpressing or silencing a particular gene product. The subsequent analysis of the phenotypic consequences of such perturbations can then be detected using cell-based assays. The focus in the present study was to establish an experimental design and a robust analysis approach for fluorescence intensity data, and to address the use of replicates for studying regulation of gene expression with varying complexity and effect size. Our analysis pipeline includes measurement of fluorescence intensities, normalization strategies using negative control spots and internal control plasmids, and linear regression (ANOVA) modelling for estimating biological effects and calculating P-values for comparisons of interests. Our results show the potential of transfected cell microarrays in studying complex regulation of gene expression by enabling measurement of biological responses in cells with overexpression and downregulation of specific gene products, combined with the possibility of assaying the effects of external stimuli. Simulation experiments show that transfected cell microarrays can be used to reliably detect even quantitatively minor biological effects by including several technical and experimental replicates

    Studies of early retrovirus-host interactions. Viral determinants for pathogenesis and the influence of sex on the susceptibility to Friend murine leukaemia virus infection

    No full text
    The studies in the present thesis sought to define virus and host factors that can influence on the susceptibility to murine retrovirus infection. In addition, we wanted to study possible correlations between events of early infection and subsequent disease progression. For an extensive discussion of the major findings, the reader is referred to papers I-IV. The following section will give a general discussion concerning 1) some methodological aspects; 2) the course of FIS-2 infection; 3) determinants responsible for erythroleukaemia; 4) determinants responsible for immunosuppression; and, 5) does sex matter

    Hostā€“Viral Interactions in the Pathogenesis of Ulcerative Colitis

    No full text
    Ulcerative colitis is characterized by relapsing and remitting colonic mucosal inflammation. During the early stages of viral infection, innate immune defenses are activated, leading to the rapid release of cytokines and the subsequent initiation of downstream responses including inflammation. Previously, intestinal viruses were thought to be either detrimental or neutral to the host. However, persisting viruses may have a role as resident commensals and confer protective immunity during inflammation. On the other hand, the dysregulation of gut mucosal immune responses to viruses can trigger excessive, pathogenic inflammation. The purpose of this review is to discuss virus-induced innate immune responses that are at play in ulcerative colitis

    Host-Viral Interactions in the Pathogenesis of Ulcerative Colitis

    No full text
    Ulcerative colitis is characterized by relapsing and remitting colonic mucosal inflammation. During the early stages of viral infection, innate immune defenses are activated, leading to the rapid release of cytokines and the subsequent initiation of downstream responses including inflammation. Previously, intestinal viruses were thought to be either detrimental or neutral to the host. However, persisting viruses may have a role as resident commensals and confer protective immunity during inflammation. On the other hand, the dysregulation of gut mucosal immune responses to viruses can trigger excessive, pathogenic inflammation. The purpose of this review is to discuss virus-induced innate immune responses that are at play in ulcerative colitis

    Gammadelta T cells in Crohn's disease: a new player in the disease pathogenesis?

    No full text
    Crohn's disease (CD) is a chronic relapsing systemic disease affecting the gastrointestinal tract. An altered immune response to commensal intestinal bacteria takes place in genetically predisposed individuals, resulting in chronic inflammation in the gut. Several alterations in the innate immunity mechanisms have been described in recent years. Thus, the study of the immunological aspects of CD, specifically the role of lymphocytes, is a key element for understanding the pathogenesis of the disease. Gammadelta T cells (Ī³Ī“ T cells) constitute only a small proportion of the lymphocytes that circulate in the blood and peripheral organs and they are present mainly in the epithelia, where they can constitute up to 40% of intraepithelial lymphocytes (IEL) in the intestinal mucosa. Due to their lack of MHC restriction and their unique plasticity and immune regulating properties they are considered key cells in the first line of defense against infections and in wound healing in the gut. Although there is growing experimental and clinical evidence of their implication in inflammatory bowel disease (IBD), including CD, their clinical relevance is still unclear. In this review, we address the possible involvement of Ī³Ī“ T cells in the pathogenesis of CD, reviewing their role against infections and in inflammation and the current evidence suggesting their implication in CD, offering a novel potential target for immunotherapy in IBD
    • ā€¦
    corecore