161 research outputs found

    Conductance oscillations in metallic nanocontacts

    Get PDF
    We examine the conductance properties of a chain of Na atoms between two metallic leads in the limit of low bias. Resonant states corresponding to the conductance channel and the local charge neutrality condition cause conductance oscillations as a function of the number of atoms in the chain. Moreover, the geometrical shape of the contact leads influences the conductivity by giving rise to additional oscillations as a function of the lead opening angle.Peer reviewe

    Multigrid method for electronic structure calculations

    Get PDF
    A general real-space multigrid algorithm for the self-consistent solution of the Kohn-Sham equations appearing in the state-of-the-art electronic-structure calculations is described. The most important part of the method is the multigrid solver for the Schrödinger equation. Our choice is the Rayleigh quotient multigrid method (RQMG), which applies directly to the minimization of the Rayleigh quotient on the finest level. Very coarse correction grids can be used, because there is, in principle, no need to represent the states on the coarse levels. The RQMG method is generalized for the simultaneous solution of all the states of the system using a penalty functional to keep the states orthogonal. The performance of the scheme is demonstrated by applying it in a few molecular and solid-state systems described by nonlocal norm-conserving pseudopotentials.Peer reviewe

    Gradient correction for positron states in solids

    Get PDF
    First-principles calculations of positron-annihilation characteristics in solids are usually based on the local-density approximation (LDA) for positron-electron correlation. The LDA systematically overestimates the annihilation rate. As a remedy we introduce a generalized gradient approximation (GGA). Our results for several metals and semiconductors show that the GGA systematically improves the predictive power of positron lifetime calculations over those based on the LDA. We compare also the resulting positron energy levels in solids with data from slow-positron experiments.Peer reviewe

    Calculation of positron states and annihilation in solids: A density-gradient-correction scheme

    Get PDF
    The generalized gradient correction method for positron-electron correlation effects in solids [B. Barbiellini et al., Phys. Rev. B 51, 7341 (1995)] is applied in several test cases. The positron lifetime, energetics, and momentum distribution of the annihilating electron-positron pairs are considered. The comparison with experiments shows systematic improvement in the predictive power of the theory compared to the local-density approximation results for positron states and annihilation characteristics.Peer reviewe

    Electronic resonance states in metallic nanowires during the breaking process simulated with the ultimate jellium model

    Get PDF
    We investigate the elongation and breaking process of metallic nanowires using the ultimate jellium model in self-consistent density-functional calculations of the electron structure. In this model the positive background charge deforms to follow the electron density and the energy minimization determines the shape of the system. However, we restrict the shape of the wires by assuming rotational invariance about the wire axis. First we study the stability of infinite wires and show that the quantum mechanical shell-structure stabilizes the uniform cylindrical geometry at given magic radii. Next, we focus on finite nanowires supported by leads modeled by freezing the shape of a uniform wire outside the constriction volume. We calculate the conductance during the elongation process using the adiabatic approximation and the WKB transmission formula. We also observe the correlated oscillations of the elongation force. In different stages of the elongation process two kinds of electronic structures appear: one with extended states throughout the wire and one with an atom-cluster like unit in the constriction and with well localized states. We discuss the origin of these structures.Comment: 11 pages, 8 figure

    A novel multigrid method for electronic structure calculations

    Full text link
    A general real-space multigrid algorithm for the self-consistent solution of the Kohn-Sham equations appearing in the state-of-the-art electronic-structure calculations is described. The most important part of the method is the multigrid solver for the Schroedinger equation. Our choice is the Rayleigh quotient multigrid method (RQMG), which applies directly to the minimization of the Rayleigh quotient on the finest level. Very coarse correction grids can be used, because there is no need to be able to represent the states on the coarse levels. The RQMG method is generalized for the simultaneous solution of all the states of the system using a penalty functional to keep the states orthogonal. The performance of the scheme is demonstrated by applying it in a few molecular and solid-state systems described by non-local norm-conserving pseudopotentials.Comment: 9 pages, 3 figure

    Solar energetic particle access to distant longitudes through turbulent field-line meandering

    Get PDF
    Context. Current solar energetic particle (SEP) propagation models describe the effects of interplanetary plasma turbulence on SEPs as diffusion, using a Fokker-Planck (FP) equation. However, FP models cannot explain the observed fast access of SEPs across the average magnetic field to regions that are widely separated in longitude within the heliosphere without using unrealistically strong cross-field diffusion. Aims. We study whether the recently suggested early non-diffusive phase of SEP propagation can explain the wide SEP events with realistic particle transport parameters. Methods. We used a novel model that accounts for the SEP propagation along field lines that meander as a result of plasma turbulence. Such a non-diffusive propagation mode has been shown to dominate the SEP cross-field propagation early in the SEP event history. We compare the new model to the traditional approach, and to SEP observations. Results. Using the new model, we reproduce the observed longitudinal extent of SEP peak fluxes that are characterised by a Gaussian profile with σ = 30 − 50◦ , while current diffusion theory can only explain extents of 11◦ with realistic diffusion coefficients. Our model also reproduces the timing of SEP arrival at distant longitudes, which cannot be explained using the diffusion model. Conclusions. The early onset of SEPs over a wide range of longitudes can be understood as a result of the effects of magnetic fieldline random walk in the interplanetary medium and requires an SEP transport model that properly describes the non-diffusive early phase of SEP cross-field propagation

    Model study of adsorbed metallic quantum dots: Na on Cu(111)

    Get PDF
    We model electronic properties of the second monolayer Na adatom islands (quantum dots) on the Cu(111) surface covered homogeneously by the first Na monolayer. An axially-symmetric three-dimensional jellium model, taking into account the effects due to the first Na monolayer and the Cu substrate, has been developed. The electronic structure is solved within the local-density approximation of the density-functional theory using a real-space multigrid method. The model enables the study of systems consisting of thousands of Na-atoms. The results for the local density of states are compared with differential conductance (dI/dVdI/dV) spectra and constant current topographs from Scanning Tunneling Microscopy.Comment: 10 pages, 8 figures. For better quality figures, download http://www.fyslab.hut.fi/~tto/cylart1.pd

    Early propagation of energetic particles across the mean field in turbulent plasmas

    Get PDF
    Propagation of energetic particles across the mean field direction in turbulent magnetic fields is often described as spatial diffusion. Recently, it has been suggested that initially the particles prop- agate systematically along meandering field lines, and only later reach the time-asymptotic diffusive cross-field propagation. In this paper, we analyse cross-field propagation of 1–100 MeV protons in composite 2D-slab turbulence superposed on a constant background magnetic field, using full-orbit particle simulations, to study the non-diffusive phase of particle propagation with a wide range of turbulence parameters. We show that the early-time non-diffusive propagation of the particles is consistent with particle propagation along turbulently meandering field lines. This results in a wide cross-field extent of the particles already at the initial arrival of particles to a given distance along the mean field direction, unlike when using spatial diffusion particle transport models. The cross-field extent of the particle distribution remains constant for up to tens of hours in turbulence environ- ment consistent with the inner heliosphere during solar energetic particle events. Subsequently, the particles escape from their initial meandering field lines, and the particle propagation across the mean field reaches time-asymptotic diffusion. Our analysis shows that in order to understand so- lar energetic particle event origins, particle transport modelling must include non-diffusive particle propagation along meandering field lines. Key words: Sun: particle emission – diffusion – magnetic fields – turbulenc

    The large longitudinal spread of solar energetic particles during the January 17, 2010 solar event

    Full text link
    We investigate multi-spacecraft observations of the January 17, 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO suggesting a longitudinal spread of nearly 360 degrees at 1AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr\"oge, 2003) and the 3D propagation model (model 2) by (Dr\"oge et al., 2010) including perpendicular diffusion in the interplanetary medium have been applied, respectively. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun we favor a scenario with strong perpendicular transport in the interplanetary medium as explanation for the observations.Comment: The final publication is available at http://www.springerlink.co
    • …
    corecore