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Multigrid method for electronic structure calculations

M. Heiskanen, T. Torsti, M. J. Puska, and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O, Box 1100, FIN-02015 HUT, Finland

~Received 10 January 2001; published 1 June 2001!

A general real-space multigrid algorithm for the self-consistent solution of the Kohn-Sham equations ap-
pearing in the state-of-the-art electronic-structure calculations is described. The most important part of the
method is the multigrid solver for the Schro¨dinger equation. Our choice is the Rayleigh quotient multigrid
method~RQMG!, which applies directly to the minimization of the Rayleigh quotient on the finest level. Very
coarse correction grids can be used, because there is, in principle, no need to represent the states on the coarse
levels. The RQMG method is generalized for the simultaneous solution of all the states of the system using a
penalty functional to keep the states orthogonal. The performance of the scheme is demonstrated by applying
it in a few molecular and solid-state systems described by nonlocal norm-conserving pseudopotentials.

DOI: 10.1103/PhysRevB.63.245106 PACS number~s!: 71.15.Dx, 31.15.Ew

I. INTRODUCTION

One of the goals of computational materials science is to
calculate from first principles the various physical and
chemical properties. This requires the solution of the elec-
tronic and ionic structures of the materials system in ques-
tion. The density-functional theory~DFT! makes a huge step
towards this goal by casting the untractable problem of many
interacting electrons to that of noninteracting particles under
the influence of an effective potential.1 The adiabatic ap-
proximation allows one to separate the ionic degrees of free-
dom from those of the electrons. However, in order to apply
DFT in practice one has to resort to approximations for elec-
tron exchange and correlation such as the local-density ap-
proximation ~LDA ! or the generalized-gradient approxima-
tion. Moreover, in the case of systems consisting of hundreds
or more atoms it is still a challenge to solve numerically
efficiently for the ensuing Kohn-Sham equations.

The numerical solution of the Kohn-Sham equations is the
concern of our present paper. It deals with real-space~RS!
methods, in which the values of the different functions are
presented using three-dimensional point grids, and the partial
differential equations are discretized using finite
differences.2,3 The RS methods, as suggested by the name
chosen, are contrasted with the popular plane-wave~PW!
schemes.4,5 There are several aspects favoring the RS meth-
ods over the PW methods. Both of the methods are used in
the context of pseudopotentials describing the electron-ion
interactions, but only the RS can easily be used in all-
electron calculations or with hard pseudopotentials of, i.e.,
first-row or transition-metal atoms, because the RS grid can
be refined in a natural way in the ion core regions~composite
grids,6–8 adaptive coordinates9–11!. Systems, such as sur-
faces, containing different length scales are more economi-
cally described in the RS than in the PW scheme because one
need not waste many grid points in the vacuum regions to
describe the slowly varying tails of wave functions. In the
RS methods, periodic boundary conditions are not necessary.
This leads to ease and accuracy in describing charged atomic
clusters in contrast to PW methods, which require an artifi-
cial neutralizing background charge. Besides the above
‘‘physical arguments,’’ there are also methodological and
computational aspects favoring the RS methods. The RS
methods allow a systematic convergence control by increas-

ing the grid~or basis function! density.~The PW methods do
so also, by adjusting the cutoff energy of the plane-wave
expansions.! The so-called ‘‘order-N’’ methods,12 the com-
putational cost of what scales linearly with the number of
electrons, require localized real-space wave functions lead-
ing naturally to the employment of RS methods.13 The dis-
cretizations in the real-space grid can be made local, and
therefore, parallelization can effectively use data decomposi-
tion in which different real-space regions are handled with
different processing units and the communications between
processing units will be mainly short ranged.14

More specifically, our choice for the numerical method is
a multigrid scheme.15,2 Several approaches employing the
multigrid idea within electronic structure calculations have
appeared during recent years.16,14,17,8,18The main idea of
multigrid methods is that they avoid the critical slowing-
down ~CSD! phenomenon occurring when a partial differen-
tial equation discretized on a real-space grid is solved with a
simple relaxation method such as the Gauss-Seidel method.
The discretization operators typically use information from a
rather localized region of the grid at a time. Therefore, the
high-frequency error of the length scale of the grid spacing is
reduced very rapidly in the relaxation. However, once the
high-frequency error has effectively been removed, the very
slow convergence of the low-frequency components domi-
nates the overall error reduction rate,15 i.e., CSD occurs. In
multigrid methods, one stops the relaxation on a given~fine!
grid before CSD sets in and transfers the equation to a
coarser grid~the so-called restriction operation! where the
low-frequency components can be solved more efficiently.
On the coarsest grid, the problem is solved exactly or as
accurately as possible, after which, one interpolates~the so-
called prolongation operation! the correction to finer grids,
performing simultaneously relaxations in order to remove the
high-frequency errors introduced in the interpolation.

The solution of the Poisson equation by multigrid meth-
ods is straightforward.15 This is because the error~or the
correction needed! also obeys a Poisson equation, and thus,
will be a smooth function to be presented and solved on the
repeatedly coarser grids optimal to handle the lower frequen-
cies. The solution of an eigenvalue problem, such as the
Schrödinger equation, is a much more complicated task than
that of the Poisson equation. The problem is no more linear
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because both the eigenfunction and the eigenvalue have to be
solved simultaneously; then the error no longer obeys the
same equation as the solution. Also, one has to solve for
several eigenpairs~eigenvalues and corresponding eigenvec-
tors!. Moreover, the existence of both negative and positive
eigenvalues makes the problem indefinite. This implies se-
vere difficulties for many simple iterative methods that con-
verge only in the case of a positive definite iteration matrix.
In particular, it can easily be shown that when using Gauss-
Seidel relaxation for the Schro¨dinger equation, the high-
frequency components typically converge, as in the case of
the Poisson equation, but the low-frequency components
may diverge, although the divergence may be slow.19 More
complicated methods, such as Kaczmarz relaxation, are guar-
anteed to converge, but may have clearly inferior high-
frequency reduction rates, which are essential for the overall
speed of multigrid methods. Another convergent method is
the generalized minimal residual algorithm~GMRES!, which
is considerably more complex than Gauss-Seidel
relaxation.20

A standard recipe for dealing with eigenproblems with
multigrids is the full-approximation-storage~FAS! method
originally described by Brandtet al.21 In FAS, one solves for
the entire problem on the coarse grids also and ends up solv-
ing for a properly modified problem so that its solution can
be used in correcting the fine-grid solution. The FAS method
may not be very straighworward to implement the Schro¨-
dinger equation. It is also difficult to present some actual
potential on the coarse levels accurately enough. However,
some successful applications of FAS have appeared in the
context of electronic structure calculations by Becket al.22

and Wang and Beck18 and advanced strategies for FAS have
been proposed.23

Briggs et al.16,14 employ a multigrid method in electronic
structure calculations by linearizing the Schro¨dinger problem
and presenting the potential contribution on the coarse levels
by an error term~residual! only. Then, on the coarse levels,
they solve effectively for the Poisson problem. Ancilotto
et al.17 modified the method by Briggset al. by shifting to a
full multigrid ~FMG! scheme and by solving on the coarse
grids, a problem including a local potential term. The idea of
FMG is to start the smoothing iterations from a coarse grid.
Then the interpolation to a finer grid provides a good initial
guess of the solution. The FMG scheme can accelerate the
convergence remarkably with respect to the~above-
described! V-cycle scheme in which one starts from the finest
level. Fattebert8 used a multigrid method with a block Galer-
kin inverse iteration~BGII! and GMRES in the relaxations.
In the method, the current approximation is kept orthogonal
against all the nearby states during the multigrid cycle. The
inverse iteration converges for a given guess for the energy
eigenvalue towards the nearest eigenvalue. In order to solve
all the desired lowest eigenstates a good guess for the eigen-
value spectrum is needed in the beginning of iterations, but
thereafter, large computational savings may be expected be-
cause explicit orthogonalizations are not needed~at least not
between well-separated states!.

A severe problem in the existing multigrid schemes for
the Schro¨dinger equation is often that the coarse grids cannot

well approximate the solutions of the coarse grid equations
themselves. As a consequence, the correction from coarse
grids, no matter how accurately the equation is solved, may
be ineffective in correcting the fine grid solution, and as a
result, the overall process converges slowly. Therefore, one
is restricted to the use of rather fine grids only and the con-
vergence speed of the scheme is drastically lowered. In those
multigrid methods, that use the potential on the coarse grids,
the size of the coarsest grid has been typically of the order of
31331331.8,17 However, using the FAS method, coarser
grids are possible at least for systems with a small number of
eigenstates solved even when the all-electron scheme is
employed.18 If a large number of eigenstates have to be
solved, problems may arise, because the coarse grids may
not be able to represent eigenstates with many nodes or the
ordering of the states may change between the successive
grids. To bypass these problems in FAS, rather complicated
strategies are needed.23

In order to avoid the coarse grid representation problems,
we utilize the so-called Rayleigh Quotient Multigrid
~RQMG! method introduced by Mandel and McCormick.24

In this method, the coarse grid relaxation passes are per-
formed so that the Rayleigh quotient calculated on thefine
grid will be minimized. In this way, there is no requirement
for the solution to be well represented on a coarse-grid and
the coarse-grid representation problem is avoided. Mandel
and McCormick24 introduced the method for the solution of
the eigenpair corresponding to the lowest eigenvalue. We
have generalized it to the simultaneous solution of a desired
number of lowest eigenenergy states by developing a scheme
that keeps the eigenstates separated by the use of a penalty
functional, Gram-Schmidt orthogonalization, and subspace
rotations. Our generalization of the RQMG method is an
attractive alternative for large-scale electronic structure cal-
culations.

The Kohn-Sham equations have to be solved self consis-
tently, i.e., the wave functions solved from the single-particle
equation determine via the density~solution of the Poisson
equation and the calculation of the exchange-correlation po-
tential! the effective potential for which they should again be
solved. To approach this self consistency requires an opti-
mized strategy so that numerical accuracy of the wave func-
tions and the potential increase in balance, enabling the most
efficient convergence.18 In order to avoid the divergence of
the self-consistency iterations, the mixing of the input and
output solutions is needed. For this feedback procedure, so-
phisticated schemes25 and control strategies11 have been pre-
sented.

The outline of the present paper is as follows. In Sec. II
we represent the most important ideas of the density-
functional theory. Section III is devoted for numerical meth-
ods, the most important of which is the Schro¨dinger equation
solver developed; the strategy for the self-consistency itera-
tions is also discussed. In Sec. IV we demonstrate with the
help of a couple of examples, the performance of our scheme
in calculating the electronic structures of small molecules
and solid-state systems described by pseudopotentials. Sec-
tion V summarizes the work and gives outlines for the future
developments.
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II. THE KOHN-SHAM SCHEME

In the Kohn-Sham method for electronic structure calcu-
lations, one solves for a set of equations self consistently.1 In
the following, we present the equations in the spin-
compensated form. In practice, we have made the straight-
forward generalization using the spin-density functional
theory. The set of equations reads as~atomic units with\
5me5e51 are used!:

S 2
1

2
¹21Veff~r ! DC i5e iC i , ~1!

n~r !5(
i

N

uC i~r !u2, ~2!

Veff~r !5Vion~r !1VH~r !1VXC~r !, ~3!

VH~r !5E n~r 8!

ur2r 8u
dr 8, ~4!

VXC~r !5
dEXC@n~r !#

dn~r !
. ~5!

The first equation~1! is a Schro¨dinger equation for noninter-
acting particles in an effective potentialVeff(r ). For finite
systems, the wave functions are required to vanish at the
boundaries of the computation volume. In the case of infinite
periodic systems, the complex wave functions have to obey
the Bloch theorem at the cell boundaries. The electron den-
sity n(r ) is obtained from a sum over theN occupied states.
The effective potential consists of an external potential
Vion(r ) due to ions~or nuclei in all-electron calculations!, the
Hartree potentialVH(r ) calculated from the electron-density
distribution, and the exchange-correlation potentialVXC(r ).
In the examples of the present paper, we use the norm-
conserving non-local pseudopotentials for the electron-ion
interactions and the local-density approximation~LDA ! for
the exchange-correlation energy

EXC@n#5E eXC„n~r !…n~r !dr , ~6!

and for the exchange-correlation potential

VXC~r !5eXC„n~r !…1n~r !
deXC

dn U
n5n(r )

. ~7!

The Hartree potential is solved from the Poisson equation

¹2VH~r !524pn~r !. ~8!

In practice, the electron-densityn(r ) is substituted by the
total charge-densityr(r ), which includes the positive ionic
~nuclear! charge neutralizing the system. In the case of finite
systems, Dirichlet boundary conditions are used with the
Coulomb potential values calculated using a multipole ex-
pansion. For periodic systems, we fix the average Coulomb
potential to zero and allow the periodic boundary conditions
to result in the corresponding converged potential.

The self-consistent solution of the above Kohn-Sham
equations leads to the ground state electronic structure mini-
mizing the total energy

Etot5(
i
E C i* ~r !S 2

1

2
¹2DC i~r !dr1

1

2E VH~r !n~r !dr

1E Vion~r !n~r !dr1EXC1Eion-ion, ~9!

where Eion-ion is the repulsive interaction between the ions
~nuclei! of the system. Instead of the self-consistency itera-
tions, the solution of the Kohn-Sham problem can be found
by minimizing directly the total energy with respect to the
wave-function parameters, e.g., plane-wave coefficients.4

However, Kresse and Furthmu¨ller5,25 have found this scheme
less efficient than the self-consistency iterations.

III. NUMERICAL METHODS

A. Schrödinger equation solver

In our real-space method, we start from an initial guess
for the effective potential and initial wave functions gener-
ated by random numbers in grid points. The wave functions
and the Hartree potential are updated alternatingly towards
self consistency. The solution of the Poisson equation is a
standard task for the multigrid scheme. If a reasonable guess
for the Coulomb potential is not available, the FMG method
will produce the solution starting from random numbers and
requiring the work that scales linearly as a function of the
size of the system@O(N)#. During the Kohn-Sham itera-
tions, one can start from the present approximation of Cou-
lomb potential and update it with respect to the new charge
density by performing only a fewV cycles.

The solution of the wave functions is a much more com-
plicated task than that of the Poisson equation because one
has to solve an eigenvalue problem that in the state-of-the-art
electronic structure calculations means the determination of
several hundreds of eigenpairs. For this purpose, we have
developed a scheme based on RQMG method introduced by
Mandel and McCormick24 for the solution of the eigenpair
corresponding to the lowest eigenvalue. We begin by review-
ing the basic principles of RQMG. This is most easily done
in the framework of the so-called coordinate relaxation
method. Thereafter, we go through the modifications made in
order to simultaneously solve for several eigenpairs.

Coordinate relaxation is a method of solving the dis-
cretized eigenproblem

Hu5lBu ~10!

by minimizing the Rayleigh quotient

^uuHuu&

^uuBuu&
. ~11!

Above, H and B are matrix operators chosen so that the
Schrödinger equation discretized on a real-space point grid
with spacingh is satisfied to a chosen orderO(hn). In Eq.
~11! u is a vector containing the wave-function values at the
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grid points. In the relaxation method, the current estimateu
is replaced by itself plus a multiple of some search-vectord

u85u1ad, ~12!

and a is chosen to minimize the Rayleigh quotient. This
leads to a simple quadratic equation fora. @Find the mini-
mum of the expression~14! below with respect toa. In the
case of a complex wave function, one has to solve for the
real and imaginary parts ofa from a coupled pair of qua-
dratic equations.# Moreover, the search-vectord is simply
chosen to be unity in one grid point and to vanish in all other
points. A complete coordinate relaxation pass is then ob-
tained by performing the minimization at each point in turn
and these passes can be repeated until the lowest state is
found with desired accuracy.

Naturally, the coordinate relaxation also suffers from
CSD because of the use of local information only in updating
u in a certain point. In order to avoid it, one applies the
multigrid idea. In the multigrid scheme by Mandel and
McCormick,24 the crucial point is thatcoarse-grid coordinate
relaxation passes are performed so that the Rayleigh quotient
calculated on thefine grid will be minimized. In this way,
there is no requirement for the solution to be well repre-
sented on a coarse grid. In practice, a coarse-grid search
substitutes the fine-grid solution by

uf85uf1aI c
f dc , ~13!

where the subscriptsf and c stand for the fine and coarse
grids, respectively, andI c

f a prolongation operator interpolat-
ing the coarse grid vector to the fine grid. The Rayleigh
quotient to be minimized is then

^uf1aI c
f dcuH f uuf1aI c

f dc&

^uf1aI c
f dcuBf uuf1aI c

f dc&

5
^uf uH fuf&12a^I f

cH fuf udc&1a2^dcuHcdc&

^uf uBfuf&12a^I f
cBfuf udc&1a2^dcuBcdc&

.

~14!

The second form is obtained by relating the coarse-grid op-
eratorsHc andBc with the fine-grid ones,H f andBf by the
Galerkin condition

Hc5I f
cH f I c

f , ~15!

Bc5I f
cBf I c

f ,

and the restriction operatorI f
c has to be the transpose of the

prolongation operator

I f
c5~ I c

f !T. ~16!

The key point to note is that whenH fuf and Bfuf are pro-
vided from the fine grid to the coarse grid, the remaining
integrals can be calculated on the coarse grid itself. Thus,
one really applies coordinate relaxation on the coarse grids to
minimize thefine levelRayleigh quotient. This is a major
departure from the earlier methods, which to some extent,
rely on the ability to represent the solution of some coarse-

grid equation on the coarse grid itself. Here, on the other
hand, one can calculate theexact change in the Rayleigh
quotient due toany coarse-grid change, no matter how
coarse the grid itself is. There is no equation whose solution
would have to be representable.

Thus, in the Rayleigh quotient minimization multigrid
~RQMG! algorithm, the coordinate relaxation passes on each
level keep track of the integrals in Eq.~14!. Actually, on the
finest level, we use Gauss-Seidel relaxation, which very ef-
fectively smooths the errors of the wave length correspond-
ing to the grid spacing. When calculating several eigenpairs,
Gauss-Seidel relaxation may also work as aresidual minimi-
zationmethod. The idea is that the coarse-grid iterations with
Gram-Schmidt orthogonalization can provide the separation
of the eigenstates so well that the subsequent finest level
relaxations converge to the correct~nearest! eigenstates with-
out orthogonalization. This requires that the effect of the
coarse-level smoothings on the low-frequency components
of the solutions overcomes the possible divergence tendency
of these components caused by the Gauss-Seidel relaxation
on the finest level.

Moreover, we discretize the original equation separately
on each grid @discretization coarse grid approximation
~DCA!# instead of using the Galerkin conditions of Eq.~15!.
This may in principle decrease the convergence rate and
force a limit to the coarsest possible grid in order to avoid
instability or divergence. However, we have observed this
DCA implementation of RQMG to be quite stable and effi-
cient. To avoid possible coarse-level instabilities occurring,
especially during the first few iteration cycles, we may recal-
culate the Rayleigh quotient whenever coarse grid correc-
tions are interpolated to a finer grid. Later, when approaching
the convergence, the recalculation can be omitted.

For the matrix operatorsH and B we have used either
high-order@O(h4) or higher# Mehrstellen or central differ-
ence stencils~CDS!.14,8 The use of high-order stencils re-
duces remarkably the density of grid points needed. The ben-
efit of the Mehrstellen scheme is that more local information
is used. The scheme leads to controlled accuracy and con-
vergence properties and to more isotropic smoothing of the
error in comparison with the use of CDS’s. The local nature
also enables a more efficient parallel coding. As the prolon-
gation operatorI c

f we usually use trilinear interpolation and
as the restriction operatorI f

c its transpose, the so-called full-
weighting operator, in which the coarse-grid values are cho-
sen to be the averaged values of the surrounding fine-grid
points. The integrations are performed by the trapezoidal
rule.

Next we consider the generalization of the RQMG
method to the simultaneous solution of several (N) mutually
orthogonal eigenpairs. The separation of the different states
is divided into two or three subtasks. First, in order to make
the coarse-grid relaxations converge towards the desired
state, we apply a penalty functional scheme. Given thek
lowest eigenfunctions, the next lowest, (k11)th state is
searched for by minimizing the functional

^uk11uHuuk11&

^uk11uBuuk11&
1(

i 51

k

qi

^ui uuk11&
2

^ui uui&•^uk11uuk11&
. ~17!
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The overlap integral in the penalty term is squared to make
the penalty positive definite. The denominator is required to
make the functional independent of the norms ofui , i
51, . . . ,k11. The minimization of this functional is
equivalent to imposing the orthonormality constraints against
the lowerk states, whenqi→`. By increasing the shiftsqi ,
any desired accuracy can be obtained, but in order to obtain
a computationally efficient algorithm, a reasonable finite
value should be used, for example

qi5~lk112l i !1Q, ~18!

whereQ is a sufficiently large positive constant. In our test
calculationsQ is of the order ofQ50.5, . . . ,2 Ha.

We minimize the expression~17! simultaneouslyfor all N
states. This simplifies the algorithm and enables a future par-
allelization over the eigenstates. Thus, the current approxi-
mations are used forui , i 51, . . . ,k. Moreover, changes in
theui during a given relaxation sweep are not used to update
the penalty term in Eq.~17!. This is sufficient, when the
states are always ordered in the same way, in the order of
increasing eigenvalue. In order to reduce computations, theB
innerproduct is actually used in calculating the penalty term
integrals because the values ofBu are readily available from
the finer level. The substitution~13! is introduced in the
functional~17! and the minimization with respect toa leads
again to a quadratic equation. This time the coefficients con-
tain terms due to the penalty part.

On the finest level, we do not apply the minimization of
the penalty functional. The ideal situation would be if a re-
sidual minimization method, such as the Gauss-Seidel
method, would keep the states calculated on the coarse levels
separated. We found out in practical calculations that this is
not true, at least when the states are far from convergence.
Therefore, we have developed for the finest level a scheme,
which by employing Gram-Schmidt orthogonalization and
subspace rotation, keeps the eigenstates orthogonal. The sub-
space rotation is a method to find the most optimally sepa-
rated eigenvectors from the approximative ones. The major
steps of the rotation are:

~i! Calculation of the Hamiltonian matrix elements be-
tween the current states:

H̄ i , j5^ui uB21Huuj&. ~19!

~ii ! Calculation of the overlap matrix:

S̄i , j5^ui uuj&. ~20!

The use of matrix elements of Eqs.~19! and ~20! leads to
eigenvectors orthogonal in the desired Euclidian sense (I or-
thogonal! and not in the sense of theB innerproduct.

~iii ! Diagonalization to find the optimal eigenvectors (uk8

5( j Āk, juj ) and corresponding eigenvalues (lk):

(
j

H̄ i , j Ā j ,k5lk(
j

S̄i , j Ā j ,k . ~21!

In practice, we apply the approximation

^ui uB21Huuj&'^ui uuj&
^ui uHuj&

^ui uBuj&
. ~22!

The Gram-Schmidt orthogonalization and the subspace
rotations are organized so that the space of the eigenvectors
is first divided into small clusters corresponding to close ei-
genvalues. The Gram-Schmidt orthogonalization is then per-
formed for each cluster at a time so that its eigenvectors
become orthogonal against the eigenvectors of the clusters of
lower eigenvalues. Then a subspace rotation is performed
within the states belonging to the present cluster. The divi-
sion to clusters reduces remarkably the cost of the subspace
rotation. This is because the cost is proportional toO(N3),
whereN is the number of states rotated. Moreover, the sub-
space rotation requires the calculation of matrix elements
that are more complicated than those for the simple Gram-
Schmidt orthogonalization.

According to our test calculations, this subspace rotation
scheme leads quite effectively toI-orthogonal eigenstates.
This is seen as a convergence of the eigenvalue problem
within the numerical accuracy, i.e., the residuals of different
eigenstates vanish. However, in order to achieve exactly van-
ishing residuals, very accurate eigenvalues are needed–the
residual norm scales as the square root of the error in the
eigenvalue. Therefore one introduces for every state a con-
stant additional potential equal to the current eigenvalue es-
timate, which shifts the eigenvalue towards zero. This effec-
tively increases the number of significant digits that can be
obtained. The error in the eigenvalue scales as the square of
the residual. When applying the subspace rotation it is im-
portant to complete the highest eigenvalue cluster; otherwise
the rotation may become inefficient.

The orthogonalization needed scales asO(N3). For small
systems of several tens of eigenpairs this is not yet a prob-
lem. The algorithm is effective and the number of fine-grid
orthogonalizations remains quite plausible, for example, in
comparison with the conjugate gradient search of eigenpairs
employing only the finest grid.26 But for larger systems with
hundreds of states it will be the bottleneck. One solution
could be to rely on the finest level only on a residual mini-
mization method when the initial stages of the iteration pro-
cess have been performed and the solution is clearly on a
stable track towards convergence.

B. Strategy for self consistency iterations

The Kohn-Sham problem has to be solved self-
consistently. This means that an optimal strategy is needed
so that computing time is not wasted in the beginning of the
self-consistency iterations to obtain unnecessarily accurate
wave functions, because these will change during the later
iterations due to the changes in the potential. Updating the
potential, including the solution of the Poisson equation, is a
much less time-consuming task that the update of all the
wave functions. Therefore, the potential update can be per-
formed frequently.18

The examples of this paper are small-molecule and bulk-
solid systems described by pseudopotentials. The strategy
used is schematically presented in Fig. 1. Similar strategies
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can certainly be applied in other kinds of Kohn-Sham calcu-
lations, for example, in those employing all-electron or
jellium-type models. In the examples of this paper the initial
electron density is the superposition of the pseudoatom den-
sities centered around given nuclear positions. From the su-
perposition, we calculate the initial effective potential, where
the wave functions are solved accurately enough using the
full-multigrid method. The FMG process is started from ran-
dom numbers for the wave functions on the coarsest level.
The accuracy of the wave functions is controlled by calcu-
lating the norms of the residuals of the eigenstates and it is
finally improved by adding moreV cycles starting from the
finest level. A certain accuracy is needed in order to initiate
self-consistency iterations that converge without large den-
sity oscillations. Then the new electron density and the en-
suing effective potential are calculated. The new potential is
not directly fed into the next iteration but it is mixed in this
place, as well as later between the self-consistency iterations,
with the input potential of the iteration. We monitor the ac-
curacy of the wave functions by calculating their residuals
and require that the accuracy has improved from the previous
iteration. Usually oneV cycle is sufficient for this, because
the changes in the potential are small.

An important point is to also find a proper balance with
respect to the pre- and postsmoothening sweeps on the dif-
ferent grid levels. Typically, on the finest level, we made two
pre- and postsmoothening sweeps, whereas on the coarser
grids their number is four. Actually, this means that on the

finest level, four successive sweeps are done if the potential
is not updated. A potential update is always preceded and
followed by two immediate smoothening sweeps.

IV. TESTS

We test the performance of our scheme by calculating the
self-consistent electronic structures of a CO2 molecule as
well as that of perfect bulk Si lattice with a supercell of 64 Si
atoms. The former system is an example of the employment
of Dirichlet boundary conditions and the use of ‘‘hard’’
pseudopotentials, whereas the latter system represents the
use of periodic boundary conditions and a supercell size typi-
cal in electronic structure calculations for point defects in
solids.

The ions are described by pseudopotentials of the
Kleinman-Bylander form,27

Vion~r !5(
a

Vion,loc(urau)

1 (
a,n,lm

1

^DVlm
a &

uDVion,l~r a!ulm~ra!&

3^DVion,l~r a8!ulm~r 8a!u, ~23!

where^DVlm
a & is a normalization factor,

^DVlm
a &5E ulm~ra!DVion,l~r a!ulm~ra!d3r , ~24!

and ra5r2Ra , ulm are the atomic pseudopotential wave
functions of angular and azimuthal momentum quantum
numbers (l ,m), from which thel-dependent ionic pseudopo-
tentials Vion,l(r ) are generated using the Troullier-Martins
scheme.28 The ion core is assumed to be spherically symmet-
ric. DVion,l(r )5Vion,l(r )2Vion,loc(r ) is the difference be-
tween thel component of the ionic pseudopotential and the
local ionic potential. We have chosen the s component of the
pseudopotential as the local component.

Because the functionsuDVion,l(r a)ulm(ra)& are short
ranged, operating on the wave function by the nonlocal parts
of the pseudopotential is in practice a multiplication by a
sparse matrix. The numerical work required to compute this
scales as the square of the number of atoms in the system,
whereas in the conventional reciprocal-space formulation,
the work scales as the cube of the system size. The advantage
of implementing the nonlocal pseudopotentials in real space
has been noted also in the context of plane-wave methods.29

In the previous multigrid implementations of the pseudo-
potential method,17,14 the nonlocal parts have only been em-
ployed on the finest grid. It is, however, straightforward to
also implement them on the coarse levels, and we have found
that this may increase the convergence rate and stability of
the method.

The CO2 molecule is placed diagonically in the center of
a cubic computation volume of the size of~12.6 a0)

3. The
experimental C–O bond length of2.19a0 is used. Dirichlet
boundary conditions are used so that the potential values
outside the cube are obtained from a multipole expansion of

FIG. 1. Strategy of self-consistency iterations. First, the wave
functions are solved nonself-consistently using the full multigrid
method in the initial potential corresponding to the superposition of
pseudoatoms. Then the effective potential is updated~this is de-
noted byP in the figure!. The potential update amounts to calcula-
tion of the new electron density, the solution of the Poisson equa-
tion, and calculation of the new exchange correlation potential.
Next, the wave functions are updated by oneV cycle. These two
steps are repeated until self-consistency has been reached.
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the charge density. The point mesh used is 633, giving the
grid spacingh50.20a0. The Mehrstellen discretization by
Briggs et al.14 is used.

In this calculation we used a mixing scheme, where the
new effective potentialVin

i 11 is obtained from the input and
output potentials according to

Vin
i 115~12k!Vin

i 1kVout
i . ~25!

The convergence of the self-consistency iterations employ-
ing the strategy described above~Fig. 1! is shown in Fig. 2.
The deviation of the total energy from the converged value is
given as a function of self-consistency iteration steps per-
formed. The zeroth iteration is a full-multigrid solution for
the wave functions in the initial potential. TwoV cycles
starting from the finest level are included in this step. The
effective potential obtained from the output electron density
is mixed with the initial potential using the feedbackk
50.4. Next, at iteration one, the wave functions are relaxed
in this new potential using oneV cycle. From this point on,
the four curves in the figure give the convergence with dif-
ferent values of the feedback parameterk. OneV cycle per
self-consistency iteration step is done. A wide range of val-
ues fork gives satisfactory convergence indicating a robust
behavior for the scheme. The accuracy of 1 meV, which is
sufficient in practical calculations, is reached after three or
four V cycles. The implementation of the nonlocal parts of
the pseudopotential on the coarse levels is found to speed up
the convergence especially in this region. From Fig. 2 we
obtain an average convergence rate of approximately one
decade per self-consistency iteration. This is of the same
order as those reported by Wang and Beck18 in their FAS
scheme or by Kresse and Furthmu¨ller25 in their plane-wave

scheme employing self-consistency iterations. The conver-
gence rate of one decade per self-consistency iteration is bet-
ter than that obtained by Ancilottoet al.17 in the FMG
scheme and much better than the rate reached in the linear-
ized multigrid scheme by Briggset al.14

In our calculations for the CO2 molecule, the initial full-
multigrid step takes about three cpu minutes on a 667 MHz
Compaq EV67 alpha processor. The succeedingV cycles
take about one minute each. In order to put these figures into
a proper context, we have solved the CO2 molecule also by
the plane-wave codeCASTEP~Ref. 30! using a Fourier grid of
643 points. In both calculations, the errors in the total energy
reduce at similar rates as a function of the cpu time.

We have solved for the electronic structure of perfect Si
lattice described by a supercell of 64 Si ions. The lattice
constant of 20.38 a0 used is the equilibrium value obtained in
a plane-wave calculation, with which we have compared our
real-space results. The first Brillouin zone is sampled in this
test using theG point only. The point mesh used for the wave
functions is 643, giving the grid spacingh50.32a0. For the
densities and potentials we use a finer grid of 1283 points.
The other numerical parameters and the iteration strategy are
the same as in the CO2 test. The resulting valence electron
density on the~110! plane is given in Fig. 3. The area of the
figure corresponds to the extent of the supercell. One notes
that exactly the same features are reproduced at the equiva-
lent points in different regions of the supercell. This means
that a fully converged result has been found. We have com-
pared the results of our real-space code to those obtained
using the plane-wave method. The energy cutoff, 18 Ry, of
the plane-wave expansion was chosen so that it results in a
real-space point mesh of 643, i.e., it is the same as in our
real-space calculation. The widths of the valence band and
band gaps obtained by the two methods agree with an accu-
racy of 3 meV. In the case of degenerate eigenstates, the
real-space code results in degenerate eigenenergies with an
accuracy better than 1 meV. The convergence towards to the
self-consistent solution occurs similarly as for the CO2 mol-

FIG. 2. Convergence of the total energy for the CO2 molecule
using direct mixing with different values of the feedback parameter
k; k50.4 ~solid line!, k50.5 ~dashed line!, k50.6 ~dash dotted
line!, andk50.7 ~dotted line!. A horizontal line has been added to
indicate the chemical accuracy of 1 meV.

FIG. 3. Valence electron density in the~110! plane obtained in
the G-point calculation for the 64-atom supercell of bulk Si. The
area of the figure corresponds to the extent of the supercell.
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ecule in Fig. 2. Thus, the convergence process seems to be
independent of the size of the system.

V. SUMMARY AND OUTLOOK

In this paper we have generalized the RQMG method in-
troduced by Mandel and McCormick24 for the simultaneous
solution of a desired number of lowest eigenenergy states.
This approach can be viewed as belonging to a third group of
multigrid methods, in addition to FAS and the techniques
where the eigenproblem is linearized. In principle, one can
use arbitrarily coarse grids in RQMG, whereas in the other
multigrid methods, one has to be able to represent all the
states on the coarsest grid.

We have demonstrated the feasibility of the method by
electronic structure calculations for the CO2 molecule and
bulk Si described by pseudopotentials. Our strategy for the
self-consistent solution consists of a full-multigrid solution
for the wave functions in the initial potential, and subsequent
self-consistency iterations. Less than fiveV cycles are gen-
erally sufficient for practically sufficient accuracy. The cpu
times required for the FMG and SCF steps are roughly equal.

We have applied the method also in two-dimensional
problems for quantum dots employing the current spin-
density functional theory,31 in three-dimensional cylindri-
cally symmetric systems, and also for calculation of positron
states in solids.26

We believe that our method will eventually compete with
the standard plane-wave methods for electronic structure cal-

culations. However, some straightforward programming is
still required. For calculations, where the optimization of the
ionic structure is necessary, the Hellmann-Feynman forces
will be implemented. In order to remove the spurious depen-
dence of the total energy on the position of the atoms with
respect to the grid points, Fourier filtering of the pseudopo-
tentials is required.29 Complex wave functions for anyk
point are easily implemented, and are already in use in two-
dimensional geometries.

Parallelization overk points can be done easily. One only
needs to communicate the electron density and effective po-
tential at the end of eachV cycle. During the RQMGV cycle,
the states are all relaxed simultaneously and independently
of each other. Therefore, parallelization over states is natural
and easy to implement. However, for larger systems the
Gram-Schmidt orthogonalization becomes very inefficient in
a state-parallel code. The most efficient and yet straightfor-
ward choice is real-space domain decomposition,14 where
each processor is mapped to a specific region of space.
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