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Electronic resonance states in metallic nanowires during the breaking process
simulated with the ultimate jellium model
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We investigate the elongation and breaking process of metallic nanowires using the ultimate jellium model
in self-consistent density-functional calculations of the electronic structure. In this model the positive back-
ground charge deforms to follow the electron density and the energy minimization determines the shape of the
system. However, we restrict the shape of the wires by assuming rotational invariance about the wire axis.
First, we study the stability of infinite wires and show that the quantum-mechanical shell structure stabilizes
the uniform cylindrical geometry at the given magic radii. Next, we focus on finite nanowires supported by
leads modeled by freezing the shape of a uniform wire outside the constriction volume. We calculate the
conductance during the elongation process using the adiabatic approximation and the WKB transmission
formula. We also observe the correlated oscillations of the elongation force. In different stages of the elonga-
tion process two kinds of electronic structures appear: one with extended states throughout the wire and one
with an atom-cluster-like unit in the constriction and with well-localized states. We discuss the origin of these
structures.

DOI: 10.1103/PhysRevB.67.075417 PACS number~s!: 73.21.Hb, 73.40.Jn, 73.63.Nm

I. INTRODUCTION

The miniaturization of the electronic components is of
great importance in the development and improvement of
new devices for applications in a wide number of fields.
Although the laws of nature are the same for macroscopic
and mesoscopic systems, the miniaturization process is
achieving the limit where the quantum behavior of matter
starts to play an important role.

If the size of the system under consideration is only a few
nanometers, the atomic character of matter emerges and it
cannot be considered as a continuum. The regime of quan-
tum behavior is reached also if one of the spatial dimensions
of the system is reduced down to the Fermi wavelength of
the conducting electrons. Then, the confinement splits the
continuous electronic band in this direction into a set of dis-
crete energy levels. In both cases, the behavior of the system
changes from what is expected from the macroscopic case. In
metallic nanowires the Fermi wavelength is of the same or-
der of magnitude as the atomic distance, and both atomic and
electronic discrete character compete and/or couple, deter-
mining the properties of nanowires.

There are many experimental and theoretical works that
have gone deep into the understanding of the main features
of nanowires. Experimental studies have focused on the in-
vestigation of the mechanical and electronic properties, such
as force, atomic structures, and conductance, pointing out the
close relation between them. Among the experimental setups,
we want to emphasize the role of the scanning tunneling
microscope1–3 ~STM! and the mechanically controllable
break-junction ~MCBJ! techniques.4–6 In both techniques
metallic nanowires are produced by putting two protrusions
in contact and then pulling them away from each other over

atomic distances. In this process, a nanowire is produced
which upon pulling is elongated and narrowed until it even-
tually breaks. These methods have allowed the study of
transport properties and stability of nanowires.

The MCBJ techniques have demonstrated the existence of
electronic and atomic shell structures,4–6 analogous to those
found in atomic clusters.7,8 In these experiments the conduc-
tance has been studied by building histograms of the conduc-
tance during the breaking process. The results show that
there are conductance values that are much more probable
than others. Due to the relation between the conductance and
the radius at the narrowest part of the nanowire, which
means that there are magic radii with enhanced stability
while other radii are less stable, and therefore they appear
less frequently in the conductance histograms. The atomic
structures of nanowires in the last steps before breaking have
been also studied with these techniques.2,9–12

The experiments discussed above have been accompanied
by supporting theoretical investigations that can be split in
two groups. The first group includes classical andab initio
molecular-dynamics simulations, in which the atomic struc-
ture of nanowires is taken into account. These investigations
have been successful in many aspects, e.g., showing the ato-
mistic mechanisms of the narrowing process~appearance of
dislocations, order-disorder stages, etc.! and their link with
other measurable quantities such as the elongation force or
the conductance.13,14 Moreover, from the viewpoint of the
present work, we notice the predictions of special atomic
arrangements in STM tips and nanowire necks.13,15–19The
second group of models is more related to the properties due
to the confinement of electrons in reduced dimensions, and
ignores the atomistic structure of matter. In these calcula-
tions, analytic approximations as well as self-consistent
electronic-structure models have been used, mainly within
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the jellium framework. The results obtained with these meth-
ods are also enlightening, explaining the cohesive and elec-
tronic transport properties of nanowires, especially in the
case of alkali metals with strong free-electron character.20–24

The aim of this paper is to simulate the breaking of
nanowires. For this purpose we choose the jellium model and
the self-consistent electronic-structure calculations within the
density-functional theory. In spite of their simplicity, jellium
models have provided a simple and transparent way to un-
derstand the physics of metallic nanowires. More specifi-
cally, we use the ultimate jellium~UJ! model. This model
was first proposed by Manninen25 to investigate the struc-
tures of alkali-metal clusters. It has been used for the same
purpose also in later studies.26,27 To our knowledge the
present work is the first time the UJ model is used to simu-
late the nanowire breaking. In practice, we solve the ensuing
Kohn-Sham equations in a real-space point grid using the
powerful Rayleigh quotient multigrid28,29 ~RQMG! method
implemented in the program packageMIKA ~Multigrid In-
stead of K-spAce!.30

Within the UJ approach, the background positive charge
density is fully relaxed in shape and density so that it equals
at every point with the electron density. One can think that
this freedom of the positive background charge mimics the
efficient rearrangement and diffusion of ions at temperatures
close to the melting point at which the shell- and supershell-
structure studies by the MCBJ techniques have been per-
formed for alkali metals.4,5 In principle, there is no restric-
tion for the geometry of the constriction. This is in contrast
with the previous jellium calculations that introducedad hoc
shapes for the nanowire. In our model the electrons them-
selves acquire self-consistently the shape, which minimizes
the Kohn-Sham energy functional, and carry along the posi-
tive background charge. However, in order to reduce compu-
tational demands and to highlight the important phenomena
from the complexity of possible solutions, we restrict the
shapes of nanowires to the axial symmetry, i.e., rotational
invariance with respect to an axis.

One of our main results is that in the narrowest part of the
nanowire, electronic cluster derived structures13,19 ~CDS’s!
appear. This tendency of electrons to form embedded clusters
in the jellium constrictions is analogous to the preferred clus-
terlike arrangements of atoms in contacts, described by the
first-principles atomistic calculations by Barnett and
Landman.13,19 CDS’s have later been reported also by other
authors.15 The main difference is that in our jellium model
the atomistic character of the previous works is lost and the
electrons alone are responsible for the phenomenon. The
single-electron states provided by the jellium model can be
studied in order to gain insight into the localization effects
associated with the CDS. The conductance of the constric-
tion can be estimated either by counting the bands crossing
the Fermi level or by using the WKB formula.

The rest of the paper is organized as follows: in Sec. II,
we describe the practical features of the UJ model and the
RQMG method to calculate the electronic structure during
the elongation process. In Sec. III, we discuss the results for
the electronic properties. As a starting point, we consider the
results for infinite wires. Then we focus our attention on the

breaking process of a finite cylindrical UJ nanowire sup-
ported by leads. Section IV contains the conclusions.

II. THEORY

A. Jellium models

The jellium model has been widely used in self-consistent
electronic-structure calculations of nanostructures. It simpli-
fies the problem by replacing the ions by a uniform rigid
positive-charge-density background that globally neutralizes
the electron negative charge. The effective potential of the
Kohn-Sham31 equations is written as~atomic Hartree units
are used throughout this paper in the equations!

Veff~r !5E n2~r 8!2n1~r 8!

ur2r 8u
dr81Vxc@n2~r !#, ~1!

where the first term on the right-hand side includes the
electron-electron and electron-positive background Coulomb
interactions, and the second term gives the exchange-
correlation potential within the local-density
approximation.32,33

Different types of jellium approaches have been intro-
duced. The simple jellium~SJ! model has the problem that
there is only one equilibrium charge density, atr s'4.18a0

@n253/(4pr s
3)#, corresponding approximately to the aver-

age conduction-electron density in Na. This means that forr s
values lower ~higher! than ;4.18a0, the jellium system
tends to expand~compress!. In the SJ model, the electron
density has the same mean value as the positive background
due to the electrostatic forces. The SJ model gives incorrect
values for properties such as the cohesive energy, surface
energy, and bulk modulus, due to the trend of the system to
compress or expand. To improve the results, corrections can
be added to the SJ model,34 e.g., using the so-called stabi-
lized jellium model introduced by Perdew co-workers35 and
Shore Rose.36

In this work, we use the UJ model, the philosophy of
which differs from the stabilized jellium model in which it
does not try to correct the above-mentioned deficiencies of
the SJ model. The peculiarity of the UJ model is that the
positive-charge background is allowed to relax. The UJ
model represents the ultimate limit in which the positive
background is completely deformed to have the same density
as the electrons locally at every point. In this way, the Cou-
lomb term in the potential always vanishes, and in Eq.~1!
only the exchange-correlation term survives. The total en-
ergy is then minimized in the interplay between the
exchange-correlation and the kinetic energies.

One limitation of the UJ model is that, as in the SJ model,
there is only one equilibrium charge density atr s'4.18a0.
But, the absence of electrostatic potential disables the
mechanism to keep the electrons at a given density, and in-
side the UJ the mean electron density becomes equal to the
equilibrium density. Another property of the UJ model, de-
rived also from the absence of electrostatic potential, is that
the shape of the electron density is to a large extent uncon-
trollable, and it evolves until the ground state is achieved.
This property has been used to study the most favorable
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shapes of simple-metal-atom clusters.25–27,37 In the present
work, however, we have to deal with open systems and we
have to impose certain controlling restrictions in order to
model the pulling of the nanowires. The description of the
solutions to these requirements is postponed to Sec. III C.

B. Numerical methods

In Sec. III A, infinite uniform cylindrical wires are stud-
ied. Since these systems are translationally invariant along
the wire axis, the relaxation of the positive background
charge and electron density is limited in the radial direction.
Consequently, it is necessary to solve numerically only the
radial part of the Schro¨dinger equation~see Zabalaet al.22

for technical details!.
For the systems studied in Secs. III B and III C, however,

the translational invariance is not required. But, in addition
to the rotational invariance, periodicity in the axial direction
is assumed with unit-cell lengthLcell . Thus, the wave func-
tions c are indexed by the quantum numbersm, n, andkz .
Here,m is the angular momentum quantum number andkz is
the Bloch wave vector along the wire axis. Withm and kz
given, n enumerates the orthogonal states in the order of
increasing energy eigenvalue. The UJ system is solved by
finding the self-consistent solution to the following set of
equations:

cmkzn
~r ,z,f!5eimfUmkzn

~r ,z!, ~2!

Umkzn
~r ,z1Lcell!5eikzLcellUmkzn

~r ,z!. ~3!

2
1

2 S 1

r

]

]r
1

]2

]r 2
2

m2

r 2

]2

]z2
12Veff~r ,z!D Umkzn

~r ,z!

5«mkzn
Umkzn

~r ,z!. ~4!

n~r !52 (
mkzn

~22d0m! f mkzn
uUmkzn

~r !u2, ~5!

Veff~r ,z!5Vxc~r ,z!5
dExc@n~r ,z!#

dn~r ,z!
. ~6!

The effective potentialVeff(r ,z) equals the exchange-
correlation potentialVxc(r ,z). The electron densityn(r ,z) is
obtained by summing single-electron densities with the oc-
cupation numbersf mkzn

. The degeneracies of the states are

taken into account by the factor 2(22d0m), and the occupa-
tion numbersf mkzn

obey the Fermi-Dirac statistics with the

Fermi level (EF) so that the system is neutral. A finite tem-
perature of 1200 K is used to stabilize the solution of the set
of equations.

The Schro¨dinger equation~4! is discretized on a regular
two-dimensional (r ,z) point mesh. We use standard fourth-
order central-difference discretizations for the first and the
second derivatives. The grid is surrounded by aframe with
the thickness of two grid points. Theseghost pointsare nec-
essary for the evaluation of the derivatives near the edges of
the computation volume. The wave functions are required to

vanish at the ghost points corresponding to the radial surface
of the cylindrical computation volume, whereas at the axis
the values at ghost points can be evaluated by noting that
U(2r ,z)5(21)mU(r ,z). The Bloch condition@Eq. ~3!#
gives the recipe for obtaining the values at the ghost points
of the periodic boundary.

The problem with standard real-space relaxation methods
for Eq. ~4! is the so-called critical slowing-down phenom-
enon resulting from the fact that at a time they use informa-
tion from a rather localized region of space. As a result of the
locality, the high-frequency error, corresponding to the
length scale of the grid spacing, is reduced very rapidly in
the relaxation. However, once the high-frequency error has
been effectively removed, the very slow convergence of the
low-frequency components dominates the overall error re-
duction rate, i.e., critical slowing down occurs. Multigrid
methods avoid this problem by treating the low-frequency
components of the error on coarser grids, where their wave-
length is comparable to the grid spacing.

Applying the multigrid methods to the Schro¨dinger equa-
tion is a fairly complicated task because one has to solve
both the eigenvalue and the wave function simultaneously—
this makes the problem nonlinear. Also, one has to solve
several wave functions simultaneously, avoiding the bottle-
neck of orthogonalizations as well as possible. The standard
methods based on the full-approximation-storage38 method
require that the wave functions are well representable on the
coarsest grid used, implying severe limitations on the accel-
eration obtained by the multigrid idea. We use the recently
developed generalization of the RQMG method28,29as imple-
mented in theMIKA package,30 which avoids the problems
described above. In short, one applies the Gauss-Seidel
method on the finest grid. On the coarser grids one applies
coordinate relaxations on the functional

^cnuHucn&

^cnucn&
1 (

i 51

n21

qi

^c i ucn&u2

^c i uc i&^cnucn&
. ~7!

This functional, which is actually defined on the finest grid,
is the sum of the Rayleigh quotient and a penalty functional,
which is introduced to ensure the orthogonality. Moreover,
the relaxations are performed simultaneously for all wave
functions. See Heiskanenet al.29 for a more thorough discus-
sion of technical details.

The Kohn-Sham equations have to be solved self-
consistently. In other words, one has to iterate until the out-
put potentialVeff obtained from Eq.~6! equals the input po-
tential Veff that is used in Eq.~4!. In typical cases of
electronic-structure calculations, to avoid divergence due to
charge sloshing, one uses sophisticated strategies to construct
the input potential for the next iteration as an optimized mix-
ture of input and output potentials of previous iterations.39,40

In the UJ iterations, however, the output potential can be
taken directly as the input potential of the next iteration re-
sulting in a rapid convergence. This is because of the absense
of the long-range Coulomb interaction, which is the cause of
the charge sloshing phenomenon.
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III. RESULTS AND DISCUSSION

A. Infinite uniform cylindrical wires

The main results of this paper concerning the nanowire
breaking process are discussed in Secs. III B and III C. As a
preliminary work, and in order to gain insight into the UJ
model in comparison with the stabilized jellium model, we
study the stability of infinite uniform cylindrical UJ wires.

We calculate the surface energy of the nanowires and the
oscillations in the energy per unit length as it was made in
our previous work describing Al, Na, and Cs nanowires
within the stabilized jellium model.20,21 The results are
shown in Fig. 1 as a function of the wire radiusR. Here the
radius is defined as the radius of the positive background
charge in the SJ system withr s54.18a0 and the same
amount of charge per unit length. In order to separate the
energy oscillation from the average behavior, the so-called
liquid-drop model41 is used. In this model the energy of the
jellium system can be written as the sum of two terms—one
proportional to the volume and the other proportional to the
surface area. For the first term, the energy/volume ratio cor-
responds naturally to the homogeneous electron gas42 with
r s54.18a0. This view has been tested in clusters and
nanowires20–22 and it describes correctly the mean energy,
i.e., without the characteristic oscillations due to the quantum
confinement. We fit the self-consistently calculated total en-
ergy per unit length to a liquid-drop-model-type function.
Then, subtracting this smooth energy function from the total
energy we get the pure energy oscillations, which are shown
in the inset of Fig. 1. Note that there are radii for which the
energy is at minimum. They correspond to wires that are
more stable than wires with slightly different radii and higher
energies. The first magic radii areR54.3a0 , 7.3a0 , 10.3a0 ,
13.6a0 , 17.8a0, and 20.7a0. We use these radii for the initial
uniform wires in the nanowire breaking simulation in Sec.
III C. The shell and super shell structures studied in previous
calculations20,21 are also quite clear. In comparison with the
energy oscillations of Na, we observe that the beat positions

are shifted to higher radii. The reason is that the UJ potential
is softer at the surface than the stabilized jellium potential
for Na.20

B. Periodic systems

Now we change the scheme and allow the wire to deform
also in the axial direction. However, we impose periodic
boundary conditions with the unit-cell lengthLcell along the
wire axis.Lcell is thus the maximum perturbation wavelength
in our calculation. From the liquid-drop model point of view,
neglecting the small contribution of the curvature energy, the
liquid wire attempts to achieve the shape that minimizes the
surface, and thereby the total energy. Under this assumption
an infinite periodic liquid wire is a uniform cylinder for
lengths Lcell,4.5R. For Lcell.4.5R, it deforms trying to
achieve the energetically most favorable state, an infinite
chain of spheres. However, Kassubeket al.43 showed using a
semiclassical model and perturbation theory that due to the
discreteness of electronic structure, the wires with magic ra-
dii remain uniform also at largeLcell /R ratios. With this re-
sult they argued that in the narrowing process of an infinite
wire, when the radius is crossing an unstable zone before the
next stable radius is achieved, the wire would spontaneously
deform acquiring a wavy or deformed shape. We corroborate
these results nonperturbatively using the UJ model as
follows.

We choose a certain radiusR and solve for the UJ elec-
tronic ~and positive-charge density! structures imposing in-
creasingly longer supercell lengthsLcell by increasing the
number of electrons in the cell. Thereby we determine the
critical supercell length~the wavelength of a perturbation! at
which the wire starts deforming. For magic wires we find no
wavy solutions, the wires remain uniform. For example, for
R57.3a0 the wire is still uniform atLcell /R'36. The wires
corresponding to the radii at the maxima of the energy oscil-
lations in Fig. 1 are the most unstable ones. These wires are
uniform up to a critical value ofLcell , but above it they
spontaneously deform to a wavy or nonuniform density pro-
file along the wire axis. As an example, Fig. 2 shows the
behavior of a wire with radiusR55.5a0 when the number of
electrons in the unit cell is 6, 7, 8, and 10 and the unit-cell
lenghtLcell increases as 19.3a0 , 22.5a0 , 25.7a0, and 32.1a0,
respectively. The unit cell with eight electrons corresponds to
a magic spherical cluster and that of ten electrons corre-
sponds to the pair of magic clusters of eight and two elec-
trons. The critical values for the unstable radii ofR
55.5a0 , 8.6a0 , 11.6a0, and 19a0 areLcell /R54.1, 3.2, 4.2,
and 4.8, respectively; i.e., we obtain values near the classical
value of 4.5. At the unstable radius ofR515.5a0, the wire is
not deformed at least up toLcell /R510 ~the largest length we
have calculated!, probably due to the fact that this radius lies
in a beat of the supershell structure and it is actually rela-
tively stable. We start all the calculations with a converged
uniform potential profile along the wire axis~see Sec. III A!.
In this way we do not ‘‘add any energy’’ to the system when
initiating the calculation. Therefore, if the wire starts to de-
form in the iteration process the reason is the disappearance
of the local energy minimum.

FIG. 1. Surface energy of infinite uniform cylindrical UJ nanow-
ires as a function of the nominal wire radius~see text!. In the inset
the energy oscillations are shown and the first magic radii are
marked.
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In addition, we narrow a stable uniform wire by increas-
ing the lengthLcell of the periodic cell and maintaining the
number of electrons constant. Each elongation step is solved
self-consistently until convergence is reached. We observe
that during the first steps the wire remains uniform, but at
some point, before breaking into isolated clusters, the wire
spontaneously deforms. Thus, we confirm self-consistently
and dynamically the hypothesis by Kassubeket al.43

C. Breaking of supported finite nanowires

In order to study the formation and evolution of nanocon-
strictions between two supporting leads, we follow the next
procedure. First, we fix the number of electrons in the peri-
odic supercell and solve self-consistently for the electronic
structure of a uniform UJ wire having a stable magic radius.
Then, the potential at both ends of the periodic cell is ‘‘fro-
zen.’’ This means that, although the Kohn-Sham equations
are solved in the whole wire, in these regions the potential is
not updated in the self-consistency process. The function of
this ‘‘frozen’’ part is to emulate the lead parts where ion
rearrangement does not occur as efficiently as at the constric-
tion. In our calculation, these leads serve as handles to grab
the UJ and pull it. The rest of the wire, the UJ at the middle
part of the supercell, is the place where the wire will stretch.
A sketch of the configuration is shown in Fig. 3. A sharp
change in the potential between the constriction and the leads
turned out to cause difficulties in numerical calculations.
Therefore, we smooth out the potential at the left edge using
the form

F~z2zedge
l !Vfrozen1F~zedge

l 2z!VUJ, ~8!

whereF is a Fermi function with half-width of 0.5a0 , Vfrozen
is the ‘‘frozen’’ potential, andVUJ is the self-consistent UJ
potential. For the right edge an analogous mixing is used.
The main properties of the nanowire will not depend on the

particular choice of this matching because the physical
features are determined by the narrowest part of the con-
striction.

We perform simulations starting with radii between 7.3a0
and 20.7a0, and changing the number of electrons initially in
the constriction. The elongation of the wire is made in steps
of about 1a0, and always starting from the previous con-
verged density, so that the grid spacing of the point mesh is
increased to enlarge the cell. In order to overcome the inter-
actions between the constriction and its periodic replica,44

we choose the length of the lead part to be 6 or more Fermi
wavelengths (lF513.7a0). Throughout the rest of
the paper we will useDL for the elongation;DL50 for the
first step.

In Fig. 4, we show snapshots of the electronic density for
a wire with the starting radius of 10.7a0. The UJ part corre-

FIG. 2. Periodic infinite UJ wire with the nominal radius ofR
55.5a0 and 6~a!, 7 ~b!, 8 ~c!, and 10~d! electrons in the periodic
unit cell. The figures show the electron density of one unit cell. The
contour spacing is 0.15 times the UJ bulk density value.

FIG. 3. Schematic view of the model system for simulations of
breaking of finite nanowires supported by two leads.

FIG. 4. Supported UJ wire. The UJ constriction contains eight
electrons. Density contour plots for four different elongation
lengths:DL57.9a0 ~a!, 19.8a0 ~b!, 20.8a0 ~c!, and 25.8a0 ~d! are
shown. The snapshots in~b! and ~c! are from consecutive self-
consistent calculations and the snapshot~d! is the last step before
the nanowire breaking. The contour spacing is 0.15 times the mean
UJ bulk density value.

ELECTRONIC RESONANCE STATES IN METALLIC . . . PHYSICAL REVIEW B 67, 075417 ~2003!

075417-5



sponds to eight UJ electrons placed initially in the neck re-
gion. Electrons are free to move inside or outside the leads,
depending on the requirements of the self-consistent solu-
tion. However, there are always about eight electrons in the
constriction. Although this is one of the smallest wires we
have calculated, it shows all the main features observed
when simulating also larger wires.

If the breaking of an UJ nanowire would happen as for
fluid between the leads, the electron density should evolve
forming a catenoid-shaped surface. Similar shapes~such as
hyperbolic,45 parabolic,23 cosine,46 etc.! have been used be-
fore to model the nanoconstriction in simple free-electron or
jellium simulations. The main results, when the comparison
is possible, have been essentially the same irrespective of the
actual shape. In Fig. 4~a!, the electron density is shown after
the elongation ofDL57.9a0. The catenoidlike density pro-
file appears as expected for a classical fluid. When we con-
tinue elongating the nanowire the shape of the electron den-
sity changes dramatically from the classical one. If the
distance between the leads is short, the electrons are strongly
trapped at the narrowest part and they do not have much
freedom in the rearrangement process. When the length of
the constriction is large enough, the electrons have more
space and freedom to achieve different types of energetically
preferred shapes. In Fig. 4~b!, DL519.8a0 and the electrons
in the constriction form a CDS. The electron density per unit
length has two minima at both sides of the CDS and there are
7.1 electrons between these narrowest cross sections. The
embedded cluster reminds the closed-shell cluster of eight
electrons, but there are some differences. There are not
enough electrons and the symmetry is not exactly spherical.
It seems that thepz orbital (z along the cylinder axis! of the
cluster has disappeared. We will analyze the structure in
more detail below. Figure 4~c! shows the next consecutive
elongation step withDL520.8a0. Note that the CDS disap-
pears and a sudden change in the mean radius happens. In
fact, the conductance changes simultaneously abruptly from
3G0 to 1G0 @see the inset in Fig. 5~a!#. At this point it is also
remarkable that the shape of the constriction is again far
from the catenoid having a constant magic radius. Figure
4~d! is for DL525.8a0, the last step before the nanowire
breaks. Again a CDS appears during the elongation from the
third to the fourth snapshot. There are 1.8 electrons between
the two minimum cross sections at both sides of the CDS.
This CDS can be interpreted as an embedded two-electron
cluster. We observe that the radius of the constrictions is
more or less constant with the same value as in the previous
snapshot in Fig. 4~c!.

At this point we want to focus on one characteristic prop-
erty of UJ found when simulating the wire breaking: the UJ
matter deforms very easily. This ability to deform allows the
formation of the cylinders of magic radii glued to the leads.
The radius jumps from one magic radius to the next through
an abrupt charge reorganization. The CDS’s of about two or
eight electrons appear before the last charge reorganizations
and the wire breaking. If there is enough UJ between the
leads, suspended long thin cylinders appear and in the last
steps they alternate with chains of CDS’s producing a very
extended elongation process. Here we want to underline that

the CDS formation is a process different from the stability of
a uniform cylindrical wire against the formation of a chain of
spheres studied in Sec. III B. In that section, the quantum-
mechanical shell structure may conserve the cylindrical
structure that is not classically stable, whereas now the
quantum-mechanical shell-structure effect destroys the
classical catenoid type of solution producing a CDS in the
constriction.

In Fig. 5, we show the conductance, the effective radius,
and the elongation force as a function of the elongation for
two different wires. The main figures correspond to an initial
configuration with the radius of 20.7a0 and 60 electrons in
the UJ constriction. The insets display the results for a wire
with an initial radius of 10.7a0 and eight electrons in the

FIG. 5. Main figures: conductance, effective radius at the con-
striction, and elongation force for a wire with initial radiusR
520.7a0 and about 60 UJ electrons in the constriction. Insets: the
same quantities for the wire in Fig. 4 with initial radiusR510a0

and eight UJ electrons in the constriction. The arrows mark the
points where the density has been plotted in Fig. 4 .
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constriction. The electron density of the latter wire is plotted
in Fig. 4 at certain elongation stages.

The conductance is calculated with the adiabatic and
semiclassical approximation used by Brandbygeet al.3 The
constriction is divided into transversal slices. Then for each
slice a uniform wire with the radial extent of the slice is built
and the energy eigenvalues of the subband bottoms are cal-
culated for this slice. The subband bottoms give effective
potentials along the wire axis. If we look at the dependence
of one of them on the position, we see that it raises at the
constriction due to the strong confinement~see Fig. 8!. The
electrons in this subband at the Fermi energy of the leads
have to overcome this barrier in order to carry current. To
evaluate the transmission probability of the electrons at the
Fermi level through the barrier, the semiclassical WKB for-
mula is used.

The properties of the nanowires have been demonstrated
to be dominated by the narrowest part of the constriction.
Therefore we calculate an effective radius by evaluating the
electron density per unit length at the middle of the wire. It is
obtained with the value of the bulk electron density~corre-
sponding tor s54.176a0). Figure 5~b! shows the effective
radius as a function of the elongation of the wire. The pla-
teaus or shoulders are in good coincidence with the infinite
wire magic radii of 10.3a0 , 7.3a0, and 4.3a0. For the larger
wire shown in Fig. 5~b! also a small kink can be seen at
DL515.5a0, which corresponds to the magic radius of
13.6a0. Wider magic radii do not appear because of the beat
region of the supercell structure. In the inset at the end of the
plateaus the effective radius increases when elongating the
wire due to the CDS formation. The sudden decrease of the

effective radius, accompanied by a step in the conductance,
is due to the sharp charge rearrangements in the constriction.

The elongation force, shown in Fig. 5~c!, is evaluated as
the negative derivative of the total energy with respect to the
elongation. The rearrangement of the wire charge leads to
discontinuous upward steps in the force, while if the radius
changes smoothly the force draws a continuous buckling
curve. At this point we want to point out the superiority of
the UJ model in the force calculation over other jellium
models.22–24 In contrast with the experiments,1,2 the latter
show a continuous behavior of the force without any steps.
Moreover, for narrow constrictions positive values are ob-
tained when the wire crosses an unstable zone. Note that in
our model the force is always negative, as observed in the
experiments1,2 and in atomistic simulations.3,13,14,47Figure 5
shows clearly that the transport, geometrical, and mechanical
properties of the nanowires under elongation are related.

D. Electronic cluster-derived structures

Let us now analyze more closely the CDS appearing in
Fig. 4~b!. In order to enlighten the origin of this structure, we
plot in Fig. 6~a! the single-particle energy spectrum of the
wire. The extended zone scheme is used for clarity. The la-
bels on the left of each branch represent the corresponding
(umu,n) subbands for the infinite wire. In practice,n is ob-
tained by calculating the number of radial nodes at the cell
boundaries~see Fig. 3!. The branches have the characteristic
parabolic shapes, but they show two different stages. In the
lower part of the parabolic subbands the eigenvalues form
flat plateaus withoutkz dispersion. These states correspond

FIG. 6. ~a! Electron band structure of the wire having eight UJ electrons and the elongation ofDL519.8a0 @Fig. 4~b!#. The difference
between the vertical dashed lines is one reciprocal lattice vector (2p/Lcell). The label for each branch represent the (m,n) subband for the
infinite wire. The energy eigenvalues are solved at twokz points: at the origin and at the zone boundary of the supercell Brillouin zone.~b!
LDOS integrated between the two narrowest points of the electron density in Fig. 4~b! is displayed. The solid line represents the total
ILDOS, the dashed lines are the contributions to the ILDOS of the states withm50 ~long-dashed line! andm51 ~short-dashed line!. The
dotted lines show the DOS of hypothetical localized states. The states marked with squares in the band structure are the main states
contributing to the ILDOS. In the inset, the analogous plot for the ILDOS in the constriction of Fig. 4~a! with DL57.9a0 is shown. The
origin of energy is the Fermi level.
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to the wave functions localized at the leads and they vanish
at the center of the constriction. Therefore the~0,2! and~2,1!
subbands cannot carry current through the constriction and
they are closed channels. On the other hand, the states of the
upper part of the~0,1! and~1,1! branches are extended along
the whole wire and they form a continuous band~with the
exception of small band gaps!. The conductance of the wire
is thus 3G0 due to the extended states of the (0,1) and (1,1)
open channels at Fermi energy. This conclusion is in accor-
dance with the value obtained with the WKB approach.

In Fig. 6~b!, we plot the integrated local density of states
~ILDOS! in the constriction for the band structure of Fig.
6~a!. It is calculated by integrating the local density of states
~LDOS! over the space between the two narrowest parts in
the electron density in Fig. 4~b!. The LDOS itself is obtained
by substituting the discrete energy levels with Lorenzians of

full width at half maximum of 0.4 eV and weighting them by
the local probability amplitudes of the states in question. The
ILDOS has two clear peaks, and while decomposing it we
can see that the lower and the higher peak have them50
andm51 character, respectively. The contribution of them
52 states is negligible. The two ILDOS peaks can be fitted
by two energy levels convoluted with the same Lorenzian as
the eigenlevels in the LDOS calculation. The resulting reso-
nance peaks are shown in Fig. 6~b! by dotted lines. The
positions and the heights of these peaks have been fitted
manually. The coincidence between the fit and the true IL-
DOS is remarkable. In the inset of Fig. 6~b!, we plot the
LDOS integrated between the leads for the electron density
showed in Fig. 4~a! having no CDS. We observe that the
ILDOS is much smoother and it is similar to the DOS of an
infinite wire with delocalized states. The differentm contri-

FIG. 7. ~a!, ~b!, and~c!: Selected single-electron states in the wire having eight UJ electrons and the elongation ofDL519.8a0 @Figs. 4~b!
and 6#. Contour and profile plots~along the wire through the maximum value! of the squared moduli of the wavefunctions are shown. Plot
~a! corresponds to am50 resonance state at the low-energy peak in the ILDOS~Fig. 6!. Plot ~b! corresponds to am51 resonance state at
high energy. Plot~c! is an extended state of them50 subband at the energy of them51 peak in the ILDOS. Plot~d! is a localized state with
m50 corresponding to the elongation ofDL525.8a0 @Fig. 4~c!#. The contour spacing is one-tenth of the maximum value. Thekz vector is
given in reciprocal-lattice vector units (2p/Lcell).
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butions cannot be fitted by single resonance peaks as shown
by the dotted peak for them50 and m51 contributions.
Moreover, the inset shows that them-decomposed peaks are
slightly asymmetric with a tail on the high-energy side.
These tails, which are not observable in the main figure in
which the CDS appears, are due to theAe dependence of the
subband peaks in the DOS for infinite wires.

The ILDOS analysis suggests that in the energy subbands
or branches, at the transition points from states localized in
the leads to states extended across the whole wire@see Fig.
6~a!#, rather localized resonance states appear in the constric-
tion. To clarify this point, we plot selected states at the IL-
DOS peak energies in Fig. 7. Figures. 7~a! and 7~b! show
clearly the localized character of the wave functions in the
constriction at these energies. The state in Fig. 7~a! can be
identified as the 1s orbital of an eight-electron cluster. The
second well-localized state@Fig. 7~b!#, hasm51. Therefore
it is doubly degenerate and it is identified as thepxy orbital.
At about the energy of thispxy orbital, apz orbital ~directed
along the wire axis! should appear in them50 branch in
order to complete the eight-electron cluster. However, we do
not find such a state with a strong localization in the con-
striction. As shown in Fig. 7~c!, the pz-type states are much
more delocalized than thepxy resonance states. The differ-
ence reflects the fact that due to the orientation the interac-
tion of the clusterpz orbital with the lead states is much
stronger than that of thepxy orbital. The absence of a well-
localizedpz orbital explains the clearly nonspherical shape
of the embedded cluster in the electron density plot of Fig.
4~b!, and also the finding that there are only 7.1 electrons in
the constriction between the two narrowest cross sections.

Figure 7~d! shows a well-localized state for the wire with
eight UJ electrons at the elongation ofDL525.8a0 @Fig.
4~d!#. The state can be identified as the 1s orbital of a two-
electron cluster glued to the leads. There are 1.8 electrons
between the two narrowest cross sections of the constriction
supporting the assumption that this state is related to a two-
electron cluster.

The states in Fig. 7 have always a wavy, nondecaying
background. This is a characteristic of resonance states; truly

localized states would decay exponentially. The wavy back-
ground corresponds to the wave function of the leads~plane
wave! at the energy that matches with that of the cluster
state. To check this assumption we realize that the wave-
length of the plane-wave background corresponds to thekz
quantum number in the extended zone scheme. There are
indeed two maxima in the modulus of the wave function per
every Brillouin-zone unit ofkz ~see the labels of each wave
function!.

The existence of resonance states is related to the shape of
the self-consistent potential having a small potential well in
the nanoconstriction. To point out how this potential can ad-
mit a resonance state, we show in Fig. 8 the effective poten-
tial for states with different (m,n) quantum numbers, calcu-
lated within the adiabatic approximation for the wire with
eight UJ electrons and the elongation ofDL519.8a0 @Fig.
4~b!#. We see that electrons at the constriction feel the exis-
tence of a potential well. We plot the energies corresponding
to the ILDOS peaks with dashed lines and note that they lie
exactly in the potential wells, where the resonances situate. It
is also evident that an occupied resonantpz state does not
occur because its energy eigenvalue should be well above the
effective potential of the (0,1) branch and because the po-
tential well of the (0,2) branch is above the Fermi level. In
addition, by the help of Fig. 8 we can explain the different
parts of the electron energy bands in Fig. 6~a!. The states
with energies above the effective potential maxima are ex-
tended along the whole wire. These are the current-carrying
states of each branch. The states below the potential mini-
mum of the constriction are trapped in the leads, correspond-
ing to flat plateaus in the lower part of the energy branches
@Fig. 6~a!#. Finally, between the potential maxima and the
local minimum in the center we find resonant states that are
enhanced at the constriction although they continue as plane
waves in the leads.

IV. CONCLUSIONS

We studied the stability of nanowires and the nanowire
breaking process performing self-consistent calculations

FIG. 8. Effective z-dependent potentials for
the different (m,n) channels. The wire has eight
UJ electrons and the elongation ofDL519.8a0

@Figs. 4~b! and 6#. The dashed lines in the poten-
tial wells are drawn at the energies of the reso-
nance states. The lowest line is the bare Kohn-
Sham potential atR50.
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within the ultimate jellium model. In the model, electrons
and positive background charge acquire the optimal density
minimizing the total energy. The model enables thus studies
of shape-dependent properties of nanoscopic systems such as
quantum dots or, as in the present work, quantum wires. The
model advocates the idea that the electronic structure deter-
mines, via the shell structure, the geometry and ionic struc-
ture also in a partially confined system.

First, we analyzed the stability of infinite periodic quan-
tum wires pointing out the ability of the electronic band
structure to stabilize the nanowires at magic radii, i.e., any
small deformation of the nanowire along thez axis always
increases the energy. At the unstable radii corresponding to
maximum values of the energy oscillations, the wire is uni-
form up to a critical value of the unit-cell length. The critical
values found are close to the classical value ofLcell /R
54.5. Above this limit the local energy minimum disappears
and a deformation of the wire lowers the total energy.

Then we investigated the elongation process of finite
nanowires supported by leads. The elongation force, conduc-
tance, and effective radius of the constriction were calculated

simultaneously. The importance of the charge relaxation, in
order to obtain results in agreement with the experiments,
was shown, e.g., in the case of the elongation force. The
ability of the ultimate jellium~electron density! to acquire
the optimal shape allows the formation of CDS’s showing
the importance of electron states in the formation of these
structures. The related resonance states and their origin was
also shown. We found CDS’s that can be linked with the
eight- and two-electron free-standing clusters.
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