461 research outputs found

    Evanescent-wave coupled right angled buried waveguide: Applications in carbon nanotube mode-locking

    Get PDF
    In this paper we present a simple but powerful subgraph sampling primitive that is applicable in a variety of computational models including dynamic graph streams (where the input graph is defined by a sequence of edge/hyperedge insertions and deletions) and distributed systems such as MapReduce. In the case of dynamic graph streams, we use this primitive to prove the following results: -- Matching: First, there exists an O~(k2)\tilde{O}(k^2) space algorithm that returns an exact maximum matching on the assumption the cardinality is at most kk. The best previous algorithm used O~(kn)\tilde{O}(kn) space where nn is the number of vertices in the graph and we prove our result is optimal up to logarithmic factors. Our algorithm has O~(1)\tilde{O}(1) update time. Second, there exists an O~(n2/α3)\tilde{O}(n^2/\alpha^3) space algorithm that returns an α\alpha-approximation for matchings of arbitrary size. (Assadi et al. (2015) showed that this was optimal and independently and concurrently established the same upper bound.) We generalize both results for weighted matching. Third, there exists an O~(n4/5)\tilde{O}(n^{4/5}) space algorithm that returns a constant approximation in graphs with bounded arboricity. -- Vertex Cover and Hitting Set: There exists an O~(kd)\tilde{O}(k^d) space algorithm that solves the minimum hitting set problem where dd is the cardinality of the input sets and kk is an upper bound on the size of the minimum hitting set. We prove this is optimal up to logarithmic factors. Our algorithm has O~(1)\tilde{O}(1) update time. The case d=2d=2 corresponds to minimum vertex cover. Finally, we consider a larger family of parameterized problems (including bb-matching, disjoint paths, vertex coloring among others) for which our subgraph sampling primitive yields fast, small-space dynamic graph stream algorithms. We then show lower bounds for natural problems outside this family

    Biomimetic Carbon-Fiber Systems Engineering: A Modular Design Strategy to Generate Biofunctional Composites from Graphene and Carbon Nanofibers

    Get PDF
    electrical conductivity. It is additionally advantageous if such materials resembled the structural and biochemical features of the natural extracellular environment. Here we show a novel modular design strategy to engineer biomimetic carbon-fiber based scaffolds. Highly porous ceramic zinc oxide (ZnO) microstructures serve as 3D sacrificial templates and are infiltrated with carbon nanotube (CNT) or graphene dispersions. Once the CNTs and graphene uniformly coat the ZnO template, the ZnO is either removed by hydrolysis or converted into carbon by chemical vapor deposition (CVD). The resulting 3D carbon scaffolds are both hierarchically ordered and free-standing. The properties of the micro-fibrous scaffolds were tailored with a high porosity (up to 93 %), high Young’s modulus (~0.027 to ~22 MPa), and an electrical conductivity of (~0.1 to ~330 S/m), as well as different surface compositions. Cell viability and fibroblast proliferation rate and protein adsorption rate assays have shown that the generated scaffolds are biocompatible and have a high protein adsorption capacity (up to 77.32 ±6.95 mg/cm3), so that they not only are able to resemble the ECM structurally, but also biochemically. The scaffolds also allow for the successful growth and adhesion of fibroblast cells showing that we provide a novel, highly scalable modular design strategy to generate biocompatible carbon-fiber systems that mimic the extracellular matrix with the additional feature of conductivity.RA gratefully acknowledges partial project funding by the Deutsche Forschungsgemeinschaft under contract FOR1616. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. GrapheneCore2 785219. CS is supported by the European Research Council (ERC StG 336104 CELLINSPIRED, ERC PoC 768740 CHANNELMAT), by the German Research Foundation (RTG 2154, SFB 1261 project B7). MT acknowledges support from the German Academic Exchange Service (DAAD) through a research grant for doctoral candidates (91526555-57048249). We acknowledge funding from EPSRC grants EP/P02534X/1, ERC grant 319277 (Hetero2D) the Royal Academy of Engineering Enterprise Scheme, the Trinity College, Cambridge, and the Isaac Newton Trust

    Striatal responsiveness to reward under threat-of-shock and working memory load: A preliminary study.

    Get PDF
    Reward and stress are important determinants of motivated behaviors. Striatal regions play a crucial role in both motivation and hedonic processes. So far, little is known on how cognitive effort interacts with stress to modulate reward processes. This study examines how cognitive effort (load) interacts with an unpredictable acute stressor (threat-of-shock) to modulate motivational and hedonic processes in healthy adults. A reward task, involving stress with unpredictable mild electric shocks, was conducted in 23 healthy adults aged 20-37 (mean age: 24.7 ± 0.9; 14 females) during functional magnetic resonance imaging (fMRI). Manipulation included the use of (a) monetary reward for reinforcement, (b) threat-of-shock as the stressor, and (c) a spatial working memory task with two levels of difficulty (low and high load) for cognitive load. Reward-related activation was investigated in a priori three regions of interest, the nucleus accumbens (NAcc), caudate nucleus, and putamen. During anticipation, threat-of-shock or cognitive load did not affect striatal responsiveness to reward. Anticipated reward increased activation in the ventral and dorsal striatum. During feedback delivery, both threat-of-shock and cognitive effort modulated striatal activation. Higher working memory load blunted NAcc responsiveness to reward delivery, while stress strengthened caudate nucleus reactivity regardless reinforcement or load. These findings provide initial evidence that both stress and cognitive load modulate striatal responsiveness during feedback delivery but not during anticipation in healthy adults. Of clinical importance, sustained stress exposure might go along with dysregulated arousal, increasing therefore the risk for the development of maladaptive incentive-triggered motivation. This study brings new insight that might help to build a framework to understand common stress-related disorders, given that these psychiatric disorders involve disturbances of the reward system, cognitive deficits, and abnormal stress reactivity

    Multiple Sclerosis in the Mount Etna Region: Possible Role of Volcanogenic Trace Elements

    Get PDF
    Background: Trace elements have been hypothesised to be involved in the pathogenesis of Multiple Sclerosis and volcanic degassing is the major natural sources of trace elements. Both incidence of Multiple Sclerosis in Catania and volcanic activity of Mount Etna have been significantly increased during the last 30 years. Due to prevailing trade winds direction, volcanic gases from Etna summit craters are mostly blown towards the eastern and southern sectors of the volcano. Objective: To evaluate the possible association between Multiple Sclerosis and exposure to volcanogenic trace elements. Methods: We evaluated prevalence and incidence of Multiple Sclerosis in four communities (47,234 inhabitants) located in the eastern flank and in two communities (52,210 inhabitants) located in the western flank of Mount Etna, respectively the most and least exposed area to crater gas emissions. Results: A higher prevalence was found in the population of the eastern flank compared to the population of the western one (137.6/100,000 versus 94.3/100,000; p-value 0.04). We found a borderline significantly higher incidence risk during the incidence study period (1980–2009) in the population of the eastern flank 4.6/100,000 (95% CI 3.1–5.9), compared with the western population 3.2/100,000 (95% CI 2.4–4.2) with a RR of 1.41 (95% CI 0.97–2.05; p-value 0.06). Incidence risks have increased over the time in both populations reaching a peak of 6.4/100,000 in the eastern flank and of 4.4/100.000 in the western flank during 2000–2009. Conclusion: We found a higher prevalence and incidence of Multiple Sclerosis among populations living in the eastern flank of Mount Etna. According to our data a possible role of TE cannot be ruled out as possible co-factor in the MS pathogenesis. However larger epidemiological study are needed to confirm this hypothesis.Publishede742596A. Monitoraggio ambientale, sicurezza e territorioJCR Journalope

    Numerical simulations on laser absorption enhancement in hybrid metallo-dielectric nanostructured targets for future nuclear astrophysics experiments

    Get PDF
    The linear electromagnetic interaction between innovative hybrid metallo-dielectric nanostructured targets and laser in visible and IR range is investigated through numerical simulations. The obtained results rely on the optimization of a target based on metallic nanowires (NWs) to enhance light absorption in the visible range of the electromagnetic spectrum. The NWs are grown within the ordered nanoholes of an alumina substrate, thus, forming a plasmonic lattice with triangular symmetry. The remaining volume of the nanoholes on top of the NWs is sealed with a transparent layer of aluminum oxide that is suitable to be chemically modified for containing about 25% of deuterium atoms. The study presented here is carried out within the framework of a scientific program named PLANETA (Plasmonic Laser Absorption on Nano-Engineered Targets) aiming at investigating new laser–matter interaction schemes in the ns domain and for nuclear fusion purposes, involving especially the D–D reaction
    corecore