11 research outputs found

    Application of magnetic cooling in electric vehicles

    Full text link
    The features of an active magnetic regenerator refrigerator (AMRR) are determined for its application in mobile air-conditioning (MAC) systems. The thermal requirements of an electric vehicle have been firstly obtained and result in a cooling demand of 3.03 kW at a temperature span of 29.3 K. A comprehensive parametric study has been conducted in order to find the AMRR design and working parameters that fulfill the vehicle needs with a minimum electric consumption and device mass. Specifically, a permanent-magnet parallel-plate AMRR made of Gd-like materials is considered. According to the possibilities of current prototypes, in the study the cycle frequencies have been limited to 10 Hz and the applied magnetic fields, to 1.4 T. The results show that an AMRR made of plates between 30 and 40 µm thick and channels between 20 and 40 µm high could meet the vehicle demand with a COP between 2 and 4 and a total mass between 20 and 50 kg. Compared to vapor-compression devices for MAC systems (COP=2.5 and mass 12 to 15 kg), the AMRR works optimally with fluid flow rates at least 3 times larger. In order to integrate AMRRs into MAC systems, the hydraulic loops should be consequently redesigned.Barbara Torregrosa-Jaime acknowledges the Spanish Ministry of Education, Culture, and Sport (Ministerio de Educacion, Cultura y Deporte) for the Research Fellowship FPU ref. AP2010-2160.Torregrosa Jaime, B.; Payá Herrero, J.; Corberán Salvador, JM. (2016). Application of magnetic cooling in electric vehicles. Science and Technology for the Built Environment. 22(5):544-555. doi:10.1080/23744731.2016.1186459S54455522

    Sizing of a reversible magnetic heat pump for the automotive industry

    Full text link
    [EN] This paper focuses on the design of an innovative air-conditioning system, namely a magnetocaloric air-conditioner for an electric minibus. An integrated design of the complete system is necessary, as the hot and cold side of the regenerator will work under dynamic conditions which depend on the instantaneous thermal load in the cabin. In order to assist the design of the system, a dynamic model has been developed for the cabin, the hydraulic loops and heat exchangers, and the magnetocaloric unit. This paper presents (i) a description of the dynamic models, (ii) an analysis of the operating conditions of the magnetocaloric unit and (iii) a discussion on the design of the magnetocaloric air-conditioner. The results show that the electric minibus requests 1.60 kW of cooling power over a span of 37 K in cooling mode, and 3.39 kW of heating power over a span of 40 K.This work has been supported by the European Commission under the 7th European Community framework program as part of the ICE project "MagnetoCaloric Refrigeration for Efficient Electric Air-Conditioning", Grant Agreement no. 265434. B. Torregrosa-Jaime acknowledges the Spanish Science and Innovation Ministry (Ministerio de Ciencia e Innovacion) for receiving the Research Fellowship FPU ref. AP2010-2160.Torregrosa Jaime, B.; Corberán Salvador, JM.; Vasile, C.; Muller, C.; Risser, M.; Payá Herrero, J. (2014). Sizing of a reversible magnetic heat pump for the automotive industry. International Journal of Refrigeration. 37:156-164. https://doi.org/10.1016/j.ijrefrig.2013.06.018S1561643

    Thermal characterisation of compact heat exchangers for air heating and cooling in electric vehicles

    Full text link
    [EN] The use of air conditioning in all-electric cars reduces their driving range by 33% in average. With the purpose of reducing the energy consumption of the vehicle and optimising the performance of the batteries, the mobile air-conditioning can be integrated with the temperature control system of the powertrain by means of a coolant loop. In such layouts, the air-to-coolant heat exchangers must operate efficiently in both air heating and cooling modes. Dynamic simulation tools comprising the entire thermal system are essential to assess its performance. In this context, fast but accurate models of the system components are required. This paper presents the thermal characterisation of a commercial compact louvered-fin flat-tube heat exchanger (heater core) for this novel application, based on an experimental campaign comprising 279 working points that reflect real air-conditioning (heating and cooling) working conditions. A general methodology to fit a single correlation of the global heat transfer coefficient for both dry and wet working conditions is explained. The semiempirical correlation developed is employed in a single-node model of the heat exchanger that requires minimal computation time. The present model predicts the heat transfer rate with an average deviation of 3.5% in the cases with dehumidification and 1.9% in the cases when the heat exchanger remains dry.This work has been supported by the European Commission under the 7th European Community framework program as part of the ICE project ‘‘MagnetoCaloric Refrigeration for Efficient Electric Air-Conditioning”, Grant Agreement no. 265434. B. Torregrosa-Jaime acknowledges the Spanish Education, Culture and Sport Ministry (Ministerio de Educación, Cultura y Deporte) for receiving the Research Fellowship FPU ref. AP2010-2160.Torregrosa-Jaime, B.; Corberán, JM.; Payá-Herrero, J.; Delamarche, JL. (2017). Thermal characterisation of compact heat exchangers for air heating and cooling in electric vehicles. Applied Thermal Engineering. 115:774-781. https://doi.org/10.1016/j.applthermaleng.2017.01.017S77478111

    On the Road to Sustainable Water Supply: Reducing Public Health Risks and Preserving Surface Water Resources in the Milluni Micro-Basin, Bolivia

    Full text link
    [EN] Bolivia is among the countries with the highest availability of freshwater globally. However, many of its natural sources are impacted by anthropogenic activities, such as mining. Water is intimately linked to public health and is essential to achieving sustainable development. It is necessary to preserve water resources by designing and validating monitoring programs that help control the quality of the sources that supply important population centers. The study area in this research is the upper part of the Milluni micro-basin, whose lagoon system supplies water for two large cities. Milluni is close to illegal and abandoned mining areas, making the region highly vulnerable to heavy metal contamination. This study aimed to optimize the resources available for monitoring Milluni. The frequency of monitoring was statistically determined, and the correlation between parameters measured in situ (pH and conductivity) and metal ion concentrations to determine low-cost indicators to monitor the presence of heavy metals. A multivariate analysis of friction of the results of the pilot year of the monitoring program designed for Milluni, considering the characteristics and economic limitations, is presented. An approximation of the quality of the surface water resources of Milluni is presented as a result of the monitoring operations.This work was supported by The Universidad Catolica Boliviana-Academic Units of La Paz and Tarija, and PROGRAMA ADSIDEO-2018 Development Cooperation Center Of the Universitat Politecnica de Valencia.Alvizuri Tintaya, PA.; Villena Martínez, EM.; Micó-Vicent, B.; Lora Garcia, J.; Torregrosa López, JI.; Lo-Iacono-Ferreira, VG. (2022). On the Road to Sustainable Water Supply: Reducing Public Health Risks and Preserving Surface Water Resources in the Milluni Micro-Basin, Bolivia. Environments. 9(1):1-16. https://doi.org/10.3390/environments9010004S1169

    A tool for predicting the thermal performance of a diesel engine

    Full text link
    This paper presents a thermal network model for the simulation of the transient response of diesel engines. The model was adjusted by using experimental data from a completely instrumented engine run under steady-state and transient conditions. Comparisons between measured and predicted material temperatures over a wide range of engine running conditions show a mean error of 7◦C. The model was then used to predict the thermal behavior of a different engine. Model results were checked against oil and coolant temperatures measured during engine warm-up at constant speed and load, and on a New European Driving Cycle. Results show that the model predicts these temperatures with a maximum error of 3◦C.Torregrosa, AJ.; Olmeda González, PC.; Martín Díaz, J.; Romero Piedrahita, CA. (2011). A tool for predicting the thermal performance of a diesel engine. Heat Transfer Engineering. 32(10):891-904. doi:10.1080/01457632.2011.548639S891904321

    Preclinical Characterization of Antioxidant Quinolyl Nitrone QN23 as a New Candidate for the Treatment of Ischemic Stroke

    Get PDF
    Nitrones are encouraging drug candidates for the treatment of oxidative stress-driven diseases such as acute ischemic stroke (AIS). In a previous study, we found a promising quinolylnitrone, QN23, which exerted a neuroprotective effect in neuronal cell cultures subjected to oxygen–glucose deprivation and in experimental models of cerebral ischemia. In this paper, we update the biological and pharmacological characterization of QN23. We describe the suitability of intravenous administration of QN23 to induce neuroprotection in transitory four-vessel occlusion (4VO) and middle cerebral artery occlusion (tMCAO) experimental models of brain ischemia by assessing neuronal death, apoptosis induction, and infarct area, as well as neurofunctional outcomes. QN23 significantly decreased the neuronal death and apoptosis induced by the ischemic episode in a dose-dependent manner and showed a therapeutic effect when administered up to 3 h after post-ischemic reperfusion onset, effects that remained 11 weeks after the ischemic episode. In addition, QN23 significantly reduced infarct volume, thus recovering the motor function in a tMCAO model. Remarkably, we assessed the antioxidant activity of QN23 in vivo using dihydroethidium as a molecular probe for radical species. Finally, we describe QN23 pharmacokinetic parameters. All these results pointing to QN23 as an interesting and promising preclinical candidate for the treatment of AIS.This work was supported by the Instituto de Salud Carlos III and co-financed by the European Development Regional Fund (FEDER) through grants PI18/00255, RD16/0019/0006, and RD21/0006/0019 to J.M. and A.A., and RD16/0019/0008 and RD21/0006/0014 to J.B.S.; the MINECO grant SAF2015-65586-R to J.M.-C.; and the Comunidad de Madrid Neurocentro project B2017/BMD-3760 to D.G.-N

    Experimental analysis of a paraffin-based cold storage tank

    Full text link
    [EN] The aim of this study is to characterize a paraffin-based cold storage tank. Novel experimental results are presented for this system which combines a significant amount of paraffin (1450 kg) immersed around 18 spiral-shaped coils disposed in counter-current flow. The paraffin has a phase-change temperature in the range 4 8 °C as measured by a 3-layer calorimeter. Different tests have been carried out with a constant mass flow rate and supply temperature. Around 31% of the paraffin has hardly any contact with the coils and hereby acts as a dead mass. The results show the importance of natural convection within the phase-change-material, particularly during the melting process. The highest efficiency has been achieved for the lowest supply temperatures and mass flow rates of the heat transfer fluid.The authors gratefully acknowledge the fundings from ACCIONA Infraestructuras.Torregrosa-Jaime, B.; López-Navarro, A.; Corberán, JM.; Esteban-Matías, JC.; Klinkner, L.; Payá-Herrero, J. (2013). Experimental analysis of a paraffin-based cold storage tank. International Journal of Refrigeration. 36(6):1632-1640. doi:10.1016/j.ijrefrig.2013.05.001S1632164036

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore