4,939 research outputs found

    Poly(dimethylsiloxane)-poly(ethyleneoxide)-heparin block copolymers. I. Synthesis and characterization

    Get PDF
    Amphiphilic block copolymers containing poly(dimethylsiloxane), poly(ethylene oxide), and heparin (PDMS-PEO-Hep) have been prepared via a series of coupling reactions using functionalized prepolymers, diisocyanates, and derivatized heparins. All intermediate steps of the synthesis yield quantifiable products with reactive end-groups, while the final products demonstrate bioactive, covalently bound heparin moieties. Due to the solvent systems required, commercial sodium heparin was converted to its benzyltrimethyl ammonium salt to enhance its solubility. The same procedure was applied to heparin degraded by nitrous acid in order to covalently couple it in solutions with the semitelechelic copolymers. As might be expected, this derivatization reduces the apparent bioactivity of the heparin. However, preliminary findings suggest that the bioactivity can be restored by reforming the heparin sodium salt

    Synthesis of Fluorine-18 Functionalized Nanoparticles for use as in vivo Molecular Imaging Agents

    Get PDF
    Nanoparticles containing fluorine-18 were prepared from block copolymers made by ring opening metathesis polymerization (ROMP). Using the fast initiating ruthenium metathesis catalyst (H_2IMes)(pyr)_2(Cl)_2Ru=CHPh, low polydispersity amphiphilic block copolymers were prepared from a cinnamoyl-containing hydrophobic norbornene monomer and a mesyl-terminated PEG-containing hydrophilic norbornene monomer. Self-assembly into micelles and subsequent cross-linking of the micelle cores by light-activated dimerization of the cinnamoyl groups yielded stable nanoparticles. Incorporation of fluorine-18 was achieved by nucleophilic displacement of the mesylates by the radioactive fluoride ion with 31% incorporation of radioactivity. The resulting positron-emitting nanoparticles are to be used as in vivo molecular imaging agents for use in tumor imaging

    Pharmacokinetics and tumor dynamics of the nanoparticle IT-101 from PET imaging and tumor histological measurements

    Get PDF
    IT-101, a cyclodextrin polymer-based nanoparticle containing camptothecin, is in clinical development for the treatment of cancer. Multiorgan pharmacokinetics and accumulation in tumor tissue of IT-101 is investigated by using PET. IT-101 is modified through the attachment of a 1,4,7,10-tetraazacyclododecane-1,4,7-Tris-acetic acid ligand to bind ^(64)Cu^(2+). This modification does not affect the particle size and minimally affects the surface charge of the resulting nanoparticles. PET data from ^(64)Cu-labeled IT-101 are used to quantify the in vivo biodistribution in mice bearing Neuro2A s.c. tumors. The ^(64)Cu-labeled IT-101 displays a biphasic plasma elimination. Approximately 8% of the injected dose is rapidly cleared as a low-molecular-weight fraction through the kidneys. The remaining material circulates in plasma with a terminal half-life of 13.3 h. Steadily increasing concentrations, up to 11% injected dose per cm^3, are observed in the tumor over 24 h, higher than any other tissue at that time. A 3-compartment model is used to determine vascular permeability and nanoparticle retention in tumors, and is able to accurately represent the experimental data. The calculated tumor vascular permeability indicates that the majority of nanoparticles stay intact in circulation and do not disassemble into individual polymer strands. A key assumption to modeling the tumor dynamics is that there is a “sink” for the nanoparticles within the tumor. Histological measurements using confocal microscopy show that IT-101 localizes within tumor cells and provides the sink in the tumor for the nanoparticles

    Poly(amidoamine)s synthesis, characterisation and interaction with BSA

    Get PDF
    Cationic poly(amidoamine)s (PAAs) were synthesised and characterised by NMR and gel permeation chromatography. Their thermal properties were investigated using thermogravimetric analysis and differential scanning calorimetry. Although poly(amidoamine)s have been used as endosomolytic polymers for protein intracellular delivery, the interaction of the polymers with the proteins still need to be investigated. BSA was used as a model protein and complexation with the different poly(amidoamine) s was investigated using gel retardation assays, fluorescence spectroscopy and high sensitivity differential scanning calorimetry. Our results indicate that the thermal stability of BSA was affected upon interaction and complexation with the poly(amidoamine)s, however these interactions did not seem to modify the structure of the protein. Polymer flexibility seemed to favour polymer/protein complexation and promoted thermal stability

    Supramolecular assembly of an amphiphilic GdIII chelate: tuning the reorientational correlation time and the water exchange rate

    Get PDF
    In this paper we report the synthesis and the characterization of the novel ligand H5EPTPA-C16 ((hydroxymethylhexadecanoyl ester)ethylenepropylenetriaminepentaacetic acid). This ligand was designed to chelate the GdIII ion in a kinetically and thermodynamically stable way while ensuring an increased water exchange rate (kex) on the GdIII complex due to steric compression around the water binding site. The attachment of a palmitic ester unit to the pendant hydroxymethyl group on the ethylenediamine bridge yields an amphiphilic conjugate that forms micelles in aqueous solution with a long tumbling time (R). The critical micelle concentration (CMC = 0.34 mM) of the amphiphilic [Gd(EPTPA-C16)(H2O)]2- chelate was determined by variable concentration proton relaxivity measurements. A global analysis of the data obtained in variable temperature and multiple field 17O NMR, and 1H NMRD measurements allowed the determination of parameters governing relaxivity for [Gd(EPTPA-C16)(H2O)]2-; this is the first time that paramagnetic micelles with optimized water exchange are investigated. The water exchange rate was found to be kex298 = 1.7×108 s-1, very similar to that previously reported for the nitrobenzyl derivative [Gd(EPTPA-bz-NO2)(H2O)]2- (kex298 = 1.5×108 s-1). The rotational dynamics of the micelles was analysed using the Lipari-Szabo approach. The micelles formed in aqueous solution show a considerable flexibility, with a local rotational correlation time of the GdIII segments, lO298 = 330 ps, being much shorter than the global rotational correlation time of the supramolecular aggregates, gO298 = 2100 ps. This internal flexibility of the micelles is responsible for the only limited increase of the proton relaxivity observed on micelle formation (r1 = 22.59 mM-1s-1 for the micelles vs. 9.11 mM-1s-1 for the monomer chelate (20 MHz; 25°C)).Fundação para a Ciência e a Tecnologia (FCT) - POCTI/QUI/47005/2002). EU Cost Action D18 "Lanthanide chemistry for diagnosis and therapy". Swiss National Science Foundation. Swiss Federal Office for Education and Science

    Nanoparticles exposing neurotensin tumor-specific drivers

    Get PDF
    Nanoparticles have attracted much attention for their potential application as in vivo carriers of drugs. Labeling of nanoparticles with bioactive markers that are able to direct them toward specific biological target receptors has led to a new generation of drug delivery systems. In particular, low molecular weight peptides that remain stable in vivo could be promising tools to selectively drive nanoparticles loaded with active components to tumor cells. We reported, recently, that tetrabranched neurotensin peptides (NT4) may be used to selectively target tumor cells with liposomes. Liposomes functionalized with tetrabranched neurotensin peptide, NT4, and loaded with doxorubicin showed clear advantages in cell binding, anthracyclin internalization, and cytotoxicity in respect of not functionalized liposomes. In this study, we compare branched (NT4) versus linear (NT) peptides in the ability to drive liposomes to target cells and deliver their toxic cargo. We showed here that the more densely decorated liposomes had a better activity profile in terms of drug delivery. Presentation of peptides to the cell membranes in the grouped shape provided by branched structure facilitates liposome cell binding and fusion

    Cell‐penetrating peptides: Achievements and challenges in application for cancer treatment

    Full text link
    One of the major hurdles to cure cancer lies in the low potency of currently available drugs, which could eventually be solved by using more potent therapeutic macromolecules, such as proteins or genes. However, although these macromolecules possess greater potency inside the cancer cells, the barely permeable cell membrane remains a formidable barrier to exert their efficacy. A widely used strategy is to use cell penetrating peptides (CPPs) to improve their intracellular uptake. Since the discovery of the first CPP, numerous CPPs have been derived from natural or synthesized products. Both in vitro and in vivo studies have demonstrated that those CPPs are highly efficient in transducing cargoes into almost all cell types. Therefore, to date, CPPs have been widely used for intracellular delivery of various cargoes, including peptides, proteins, genes, and even nanoparticles. In addition, recently, based on the successes of CPPs in cellular studies, their applications in vivo have been actively pursued. This review will focus on the advanced applications of CPP‐based in vivo delivery of therapeutics (e.g., small molecule drugs, proteins, and genes). In addition, we will highlight certain updated applications of CPPs for intracellular delivery of nanoparticulate drug carriers, as well as several “smart” strategies for tumor targeted delivery of CPP‐cargoes. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 102A: 575–587, 2014.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102051/1/jbma34859.pd
    corecore