281 research outputs found
Deep face profiler (DeFaP): Towards explicit, non-restrained, non-invasive, facial and gaze comprehension
Eye tracking and head pose estimation (HPE) have previously lacked reliability, interpretability, and comprehensibility. For instance, many works rely on traditional computer vision methods, which may not perform well in dynamic and realistic environments. Recently, a widespread trend has emerged, leveraging deep learning for HPE specifically framed as a regression task; however, considering the real-time applications, the problem could be better formulated as classification (e.g., left, centre, right head pose and gaze) using a hybrid approach. For the first time, we present a complete facial profiling approach to extract micro and macro facial movement, gaze, and eye state features, which can be used for various applications related to comprehension analysis. The multi-model approach provides discrete human-understandable head pose estimations utilising deep transfer learning, a newly introduced method of head roll calculation, gaze estimation via iris detection, and eye state estimation (i.e., open or closed). Unlike existing works, this approach can automatically analyse the input image or video frame to produce human-understandable binary codes (e.g., eye open or close, looking left or right, etc.) for each facial component (aka face channels). The proposed approach is validated on multiple standard datasets, indicating outperformance compared to existing methods in several aspects, including reliability, generalisation, completeness, and interpretability. This work will significantly impact several diverse domains, including psychological and cognitive tasks with a broad scope of applications, such as in police interrogations and investigations, animal behaviour, and smart applications, including driver behaviour analysis, student attention measurement, and automated camera flashes
Seasonal Heat Acclimatisation in Healthy Adults:A Systematic Review
BACKGROUND: Physiological heat adaptations can be induced following various protocols that use either artificially controlled (i.e. acclimation) or naturally occurring (i.e. acclimatisation) environments. During the summer months in seasonal climates, adequate exposure to outdoor environmental heat stress should lead to transient seasonal heat acclimatisation. OBJECTIVES: The aim of the systematic review was to assess the available literature and characterise seasonal heat acclimatisation during the summer months and identify key factors that influence the magnitude of adaptation. ELIGIBILITY CRITERIA: English language, full-text articles that assessed seasonal heat acclimatisation on the same sample of healthy adults a minimum of 3 months apart were included. DATA SOURCES: Studies were identified using first- and second-order search terms in the databases MEDLINE, SPORTDiscus, CINAHL Plus with Full Text, Scopus and Cochrane, with the last search taking place on 15 July 2021. RISK OF BIAS: Studies were independently assessed by two authors for the risk of bias using a modified version of the McMaster critical review form. DATA EXTRACTION: Data for the following outcome variables were extracted: participant age, sex, body mass, height, body fat percentage, maximal oxygen uptake, time spent exercising outdoors (i.e. intensity, duration, environmental conditions), heat response test (i.e. protocol, time between tests), core temperature, skin temperature, heart rate, whole-body sweat loss, whole-body and local sweat rate, sweat sodium concentration, skin blood flow and plasma volume changes. RESULTS: Twenty-nine studies were included in this systematic review, including 561 participants across eight countries with a mean summer daytime wet-bulb globe temperature (WBGT) of 24.9 °C (range: 19.5–29.8 °C). Two studies reported a reduction in resting core temperature (0.16 °C; p < 0.05), 11 reported an increased sweat rate (range: 0.03–0.53 L·h(−1); p < 0.05), two observed a reduced heart rate during a heat response test (range: 3–8 beats·min(−1); p < 0.05), and six noted a reduced sweat sodium concentration (range: − 22 to − 59%; p < 0.05) following summer. The adaptations were associated with a mean summer WBGT of 25.2 °C (range: 19.6–28.7 °C). LIMITATIONS: The available studies primarily focussed on healthy male adults and demonstrated large differences in the reporting of factors that influence the development of seasonal heat acclimatisation, namely, exposure time and duration, exercise task and environmental conditions. CONCLUSIONS: Seasonal heat acclimatisation is induced across various climates in healthy adults. The magnitude of adaptation is dependent on a combination of environmental and physical activity characteristics. Providing environmental conditions are conducive to adaptation, the duration and intensity of outdoor physical activity, along with the timing of exposures, can influence seasonal heat acclimatisation. Future research should ensure the documentation of these factors to allow for a better characterisation of seasonal heat acclimatisation. PROSPERO REGISTRATION: CRD42020201883. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40279-022-01677-0
Facile synthesis and proposed mechanism of α,ω‐oxetanyl-telechelic poly(3-nitratomethyl-3-methyl oxetane) by an SN2(i) nitrato displacement method in basic media
The synthesis of a novel heterocyclic–telechelic polymer, α,ω-oxetanyl-telechelic poly(3-nitratomethyl-3-methyl oxetane), is described. Infrared spectroscopy (IR), gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy have been used to confirm the successful synthesis, demonstrating the presence of the telechelic-oxetanyl moieties. Synthesis of the terminal functionalities has been achieved via displacement of nitrato groups, in a manner similar to that employed with other leaving groups such as azido, bromo, and nitro, initiated by nucleophiles. In the present case, displacement occurs on the ends of a nitrato-functionalized polymer driven by the formation of sodium nitrate, which is supported by the polar aprotic solvent N,N-dimethyl formamide. The formation of an alkoxide at the polymer chain ends is favored and allows internal back-biting to the nearest carbon bearing the nitrato group, intrinsically in an SN2(i) reaction, leading to α,ω-oxetanyl functionalization. The telechelic-oxetanyl moieties have the potential to be cross-linked by chemical (e.g., acidic) or radiative (e.g., ultraviolet) curing methods without the use of high temperatures, usually below 100°C. This type of material was designed for future use as a contraband simulant, whereby it would form the predominant constituent of elastomeric composites comprising rubbery polymer with small quantities of solids, typically crystals of contraband substances, such as explosives or narcotics. This method also provides an alternative approach to ring closure and synthesis of heterocycles
Effects of chemokines on proliferation and apoptosis of human mesangial cells
BACKGROUND: Proliferation and apoptosis of mesangial cells (MC) are important mechanisms during nephrogenesis, for the maintenance of glomerular homeostasis as well as in renal disease and glomerular regeneration. Expression of chemokines and chemokine receptors by intrinsic renal cells, e.g. SLC/CCL21 on podocytes and CCR7 on MC is suggested to play a pivotal role during these processes. Therefore the effect of selected chemokines on MC proliferation and apoptosis was studied. METHODS: Proliferation assays, cell death assays including cell cycle analysis, hoechst stain and measurement of caspase-3 activity were performed. RESULTS: A dose-dependent, mesangioproliferative effect of the chemokine SLC/CCL21, which is constitutively expressed on human podocytes was seen via activation of the chemokine receptor CCR7, which is constitutively expressed on MC. In addition, in cultured MC SLC/CCL21 had a protective effect on cell survival in Fas-mediated apoptosis. The CXCR3 ligands IP-10/CXCL10 and Mig/CXCL9 revealed a proproliferative effect but did not influence apoptosis of MC. Both the CCR1 ligand RANTES/CCL5 and the amino-terminally modified RANTES analogue Met-RANTES which blocks CCR1 signalling had no effect on proliferation and apoptosis. CONCLUSIONS: The different effects of chemokines and their respective receptors on proliferation and apoptosis of MC suggest highly regulated, novel biological functions of chemokine/chemokine receptor pairs in processes involved in renal inflammation, regeneration and glomerular homeostasis
'You can take a horse to water but you can't make it drink': Exploring children's engagement and resistance in family therapy
The final publication is available at Springer via http://dx.doi.org/10.1007/s10591-012-9220-8Children’s engagement and disengagement, adherence and non-adherence, compliance and non-compliance in healthcare have important implications for services. In family therapy mere attendance to the appointments is no guarantee of engaging in the treatment process and as children are not the main initiators of attendance engaging them through the process can be a complex activity for professionals. Through a conversation analysis of naturally occurring family therapy sessions we explore the main discursive strategies that children employ in this context to passively and actively disengage from the therapeutic process and investigate how the therapists manage and attend to this. We note that children competently remove themselves from therapy through passive resistance, active disengagement, and by expressing their autonomy. Analysis reveals that siblings of the constructed ‘problem’ child are given greater liberty in involvement. We conclude by demonstrating how therapists manage the delicate endeavour of including all family members in the process and how engagement and re-engagement are essential for meeting goals and discuss broader implications for healthcare and other settings where children may disengage
A phase I and II study of 2-weekly irinotecan with capecitabine in advanced gastroesophageal adenocarcinoma
We investigated 2-weekly intravenous irinotecan combined with oral capecitabine in patients with advanced gastroesophageal adenocarcinoma. In phase I, doses were escalated in chemotherapy naïve or pretreated patients to establish maximum tolerated doses (MTD). In phase II, patients were treated at MTD as first-line therapy with the primary end point of RECIST response. Dose levels in phase I were as follows: Level 1: irinotecan 150 mg m−2 on day 1; capecitabine 850 mg m−2 12-hourly on days 1–9. Level 2: as level 1 but capecitabine 1000 mg m−2. Level 3: as level 2 but irinotecan 180 mg m−2. Level 4: as level 3 but capecitabine 1250 mg m−2. In phase I, 21 patients were entered. Maximum tolerated dose was level 3. Dose-limiting toxicities were lethargy, diarrhoea, vomiting and mucositis. In phase II, 31 patients were entered at level 3. During the first six cycles, 13 of these patients underwent dose reduction and three patients stopped treatment for toxicity. A further six patients stopped for progressive disease. The commonest grade 3–4 toxicities were lethargy (20%), diarrhoea (17%), nausea (10%) and anorexia (10%). There were no treatment-related deaths. The response rate was 32% (95% CI 16–52%). Median overall survival was 10 months. This regimen is active in gastroesophageal adenocarcinoma. However, using the MTD defined in phase I, fewer than 50% patients tolerated six cycles without modification in phase II; therefore, modification of these doses is recommended for further study
Evasion by Stealth: Inefficient Immune Activation Underlies Poor T Cell Response and Severe Disease in SARS-CoV-Infected Mice
Severe Acute Respiratory Syndrome caused substantial morbidity and mortality during the 2002–2003 epidemic. Many of the features of the human disease are duplicated in BALB/c mice infected with a mouse-adapted version of the virus (MA15), which develop respiratory disease with high morbidity and mortality. Here, we show that severe disease is correlated with slow kinetics of virus clearance and delayed activation and transit of respiratory dendritic cells (rDC) to the draining lymph nodes (DLN) with a consequent deficient virus-specific T cell response. All of these defects are corrected when mice are treated with liposomes containing clodronate, which deplete alveolar macrophages (AM). Inhibitory AMs are believed to prevent the development of immune responses to environmental antigens and allergic responses by interacting with lung dendritic cells and T cells. The inhibitory effects of AM can also be nullified if mice or AMs are pretreated with poly I:C, which directly activate AMs and rDCs through toll-like receptors 3 (TLR3). Further, adoptive transfer of activated but not resting bone marrow–derived dendritic cells (BMDC) protect mice from lethal MA15 infection. These results may be relevant for SARS in humans, which is also characterized by prolonged virus persistence and delayed development of a SARS-CoV-specific immune response in individuals with severe disease
Facile formation of highly mobile supported lipid bilayers on surface-quaternized pH-responsive polymer brushes
Poly(2-dimethylamino)ethyl methacrylate) (PDMA) brushes are grown from planar substrates via surface atom transfer radical polymerization (ATRP). Quaternization of these brushes is conducted using 1-iodooctadecane in n-hexane, which is a non-solvent for PDMA. Ellipsometry, AFM, and water contact angle measurements show that surface-confined quaternization occurs under these conditions, producing pH-responsive brushes that have a hydrophobic upper surface. Systematic variation of the 1-iodooctadecane concentration and reaction time enables the mean degree of surface quaternization to be optimized. Relatively low degrees of surface quaternization (ca. 10 mol % as judged by XPS) produce brushes that enable the formation of supported lipid bilayers, with the hydrophobic pendent octadecyl groups promoting in situ rupture of lipid vesicles. Control experiments confirm that quaternized PDMA brushes prepared in a good brush solvent (THF) produce non-pH-responsive brushes, presumably because the pendent octadecyl groups form micelle-like physical cross-links throughout the brush layer. Supported lipid bilayers (SLBs) can also be formed on the non-quaternized PDMA precursor brushes, but such structures proved to be unstable to small changes in pH. Thus, surface quaternization of PDMA brushes using 1-iodooctadecane in n-hexane provides the best protocol for the formation of robust SLBs. Fluorescence recovery after photobleaching (FRAP) studies of such SLBs indicate diffusion coefficients (2.8 ± 0.3 μm s–1) and mobile fractions (98 ± 2%) that are comparable to the literature data reported for SLBs prepared directly on planar glass substrates
Nemateriālo aktīvu grāmatvedības metodoloģiskās problēmas Latvijas Republikā
Nonfluorinated hydrophobic surfaces
are of interest for reduced
cost, toxicity, and environmental problems. Searching for such surfaces
together with versatile processing, A200 silica nanoparticles are
modified with an oligodimethylsiloxane and used by themselves or with
a polymer matrix. The goal of the surface modification is controlled
aggregate size and stable suspensions. Characterization is done by
NMR, microanalysis, nitrogen adsorption, and dynamic light scattering.
The feasibility of the concept is then demonstrated. The silica aggregates
are sprayed in a scalable process to form ultrahydrophobic and imperceptible
coatings with surface topographies of controlled nanoscale roughness
onto different supports, including nanofibrillated cellulose. To improve
adhesion and wear properties, the organosilica was mixed with polymers.
The resulting composite coatings are characterized by FE-SEM, AFM,
and contact angle measurements. Depending on the nature of the polymer,
different functionalities can be developed. Poly(methyl methacrylate)
leads to almost superhydrophobic and highly transparent coatings.
Composites based on commercial acrylic car paint show “pearl-bouncing”
droplet behavior. A light-emitting polyfluorene is synthesized to
prepare luminescent and water repellent coatings on different supports.
The interactions between polymers and the organosilica influence coating
roughness and are critical for wetting behavior. In summary, the feasibility
of a facile, rapid, and fluorine-free hydrophobization concept was
successfully demonstrated in multipurpose antiwetting applications
- …