81 research outputs found

    Depth profile of the ferromagnetic order in a YBa2_2Cu3_3O7_7 / La2/3_{2/3}Ca1/3_{1/3}MnO3_3 superlattice on a LSAT substrate: a polarized neutron reflectometry study

    Full text link
    Using polarized neutron reflectometry (PNR) we have investigated a YBa2Cu3O7(10nm)/La2/3Ca1/3MnO3(9nm)]10 (YBCO/LCMO) superlattice grown by pulsed laser deposition on a La0.3Sr0.7Al0.65Ta0.35O3 (LSAT) substrate. Due to the high structural quality of the superlattice and the substrate, the specular reflectivity signal extends with a high signal-to-background ratio beyond the fourth order superlattice Bragg peak. This allows us to obtain more detailed and reliable information about the magnetic depth profile than in previous PNR studies on similar superlattices that were partially impeded by problems related to the low temperature structural transitions of the SrTiO3 substrates. In agreement with the previous reports, our PNR data reveal a strong magnetic proximity effect showing that the depth profile of the magnetic potential differs significantly from the one of the nuclear potential that is given by the YBCO and LCMO layer thickness. We present fits of the PNR data using different simple block-like models for which either a ferromagnetic moment is induced on the YBCO side of the interfaces or the ferromagnetic order is suppressed on the LCMO side. We show that a good agreement with the PNR data and with the average magnetization as obtained from dc magnetization data can only be obtained with the latter model where a so-called depleted layer with a strongly suppressed ferromagnetic moment develops on the LCMO side of the interfaces. The models with an induced ferromagnetic moment on the YBCO side fail to reproduce the details of the higher order superlattice Bragg peaks and yield a wrong magnitude of the average magnetization. We also show that the PNR data are still consistent with the small, ferromagnetic Cu moment of 0.25muB that was previously identified with x-ray magnetic circular dichroism and x-ray resonant magnetic reflectometry measurements on the same superlattice.Comment: 11 pages, 7 figure

    Growth modes of nanoparticle superlattice thin films

    Get PDF
    We report about the fabrication and characterization of iron oxide nanoparticle thin film superlattices. The formation into different film morphologies is controlled by tuning the particle plus solvent-to-substrate interaction. It turns out that the wetting vs. dewetting properties of the solvent before the self-assembly process during solvent evaporation plays a major role to determine the resulting film morphology. In addition to layerwise growth also three-dimensional mesocrystalline growth is evidenced. The understanding of the mechanisms ruling nanoparticle self-assembly represents an important step toward the fabrication of novel materials with tailored optical, magnetic or electrical transport properties

    Domain-wall structure in thin films with perpendicular anisotropy: Magnetic force microscopy and polarized neutron reflectometry study

    Get PDF
    Ferromagnetic domain patterns and three-dimensional domain-wall configurations in thin CoCrPt films with perpendicular magnetic anisotropy were studied in detail by combining magnetic force microscopy and polarized neutron reflectometry with micromagnetic simulations. With the first method, lateral dimension of domains with alternative magnetization directions normal to the surface and separated by domain walls in 20-nm-thick CoCrPt films were determined in good agreement with micromagnetic simulations. Quantitative analysis of data on reflectometry shows that domain walls consist of a Bloch wall in the center of the thin film, which is gradually transformed into a pair of Néel caps at the surfaces. The width and in-depth thickness of the Bloch wall element, transition region, and Néel caps are found consistent with micromagnetic calculations. A complex structure of domain walls serves to compromise a competition between exchange interactions, keeping spins parallel, magnetic anisotropy orienting magnetization normal to the surface, and demagnetizing fields, promoting in-plane magnetization. It is shown that the result of such competition strongly depends on the film thickness, and in the thinner CoCrPt film (10 nm thick), simple Bloch walls separate domains. Their lateral dimensions estimated from neutron scattering experiments agree with micromagnetic simulations.Microelectronics Advanced Research Corporation (MARCO)United States. Defense Advanced Research Projects Agenc

    Combined specular and off-specular reflectometry: elucidating the complex structure of soft buried interfaces

    Get PDF
    Neutron specular reflectometry (SR) and off-specular scattering (OSS) are non\uaddestructive techniques which, through deuteration, give a high contrast even among chemically identical species and are therefore highly suitable for investigations of soft-matter thin films. Through a combination of these two techniques, the former yielding a density profile in the direction normal to the sample surface and the latter yielding a depth-resolved in-plane lateral structure, one can obtain quite detailed information on buried morphology on length scales ranging from the order of \ue5ngstr\uf6ms to ∼10 \ub5m. This is illustrated via quantitative evaluation of data on SR and OSS collected in time-of-flight (ToF) measurements of a set of films composed of immiscible polymer layers, protonated poly(methyl methacrylate) and deuterated polystyrene, undergoing a decomposition process upon annealing. Joint SR and OSS data analysis was performed by the use of a quick and robust originally developed algorithm including a common absolute-scale normalization of both types of scattering, which are intricately linked, constraining the model to a high degree. This, particularly, makes it possible to distinguish readily between different dewetting scenarios driven either by the nucleation and growth of defects (holes, protrusions etc.) or by thermal fluctuations in the buried interface between layers. Finally, the 2D OSS maps of particular cases are presented in different spaces and qualitative differences are explained, allowing also the qualitative differentiation of the in-plane structure of long-range order, the correlated roughness and bulk defects by a simple inspection of the scattering maps prior to quantitative fit

    Magnetization reversal and exchange bias effects in hard/soft ferromagnetic bilayers with orthogonal anisotropies

    Get PDF
    The magnetization reversal processes are discussed for exchange-coupled ferromagnetic hard/soft bilayers made from Co[subscript 0.66]Cr[subscript 0.22]Pt[subscript 0.12] (10 and 20 nm)/Ni (from 0 to 40 nm) films with out-of-plane and in-plane magnetic easy axes respectively, based on room temperature hysteresis loops and first-order reversal curve analysis. On increasing the Ni layer thicknesses, the easy axis of the bilayer reorients from out-of-plane to in-plane. An exchange bias effect, consisting of a shift of the in-plane minor hysteresis loops along the field axis, was observed at room temperature after in-plane saturation. This effect was associated with specific ferromagnetic domain configurations experimentally determined by polarized neutron reflectivity. On the other hand, perpendicular exchange bias effect was revealed from the out-of-plane hysteresis loops and it was attributed to residual domains in the magnetically hard layer.National Science Foundation (U.S.)MIT-Spain/La Cambra de Barcelona Seed Fun

    Magnetization reversal and exchange bias effects in hard/soft ferromagnetic bilayers with orthogonal anisotropies

    Get PDF
    21 p.The magnetization reversal processes are discussed for exchange-coupled ferromagnetic hard/soft bilayers made from Co0.66Cr0.22Pt0.12 (10 and 20 nm)/Ni (from 0 to 40 nm) films with out-of-plane and in-plane magnetic easy axes respectively, based on room temperature hysteresis loops and first-order reversal curve analysis. On increasing the Ni layer thicknesses, the easy axis of the bilayer reorients from out-of-plane to in-plane. An exchange bias effect, consisting of a shift of the in-plane minor hysteresis loops along the field axis, was observed at room temperature after in-plane saturation. This effect was associated with specific ferromagnetic domain configurations experimentally determined by polarized neutron reflectivity. On the other hand, perpendicular exchange bias effect was revealed from the out-of-plane hysteresis loops and it was attributed to residual domains in the magnetically hard layer.CAR and DN gratefully acknowledge the support of the National Science Foundation and the MIT-Spain/La Cambra de Barcelona Seed Fund. CR and DN thank the Ministerio de Economia y Competitividad for financial support (MAT2010-20798-C05-02)

    Ferromagnetic Domain Distribution in Thin Films During Magnetization Reversal

    Full text link
    We have shown that polarized neutron reflectometry can determine in a model-free way not only the mean magnetization of a ferromagnetic thin film at any point of a hysteresis cycle, but also the mean square dispersion of the magnetization vectors of its lateral domains. This technique is applied to elucidate the mechanism of the magnetization reversal of an exchange-biased Co/CoO bilayer. The reversal process above the blocking temperature is governed by uniaxial domain switching, while below the blocking temperature the reversal of magnetization for the trained sample takes place with substantial domain rotation
    • …
    corecore