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Abstract

Neutron specular reflectometry (SR) and off-specular scattering (OSS) are non-destructive

techniques, which, through deuteration, give a high contrast even among chemically

identical species and are therefore highly suitable for investigations of soft matter

thin films. Through a combination of both techniques: the former yielding a den-

sity profile in the direction normal to the sample surface and the latter yielding a

depth resolved in-plane lateral structure, one can obtain quite detailed information on
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buried morphology on length scales ranging from ∼ Å to ∼ 10 µm. This is illustrated

via quantitative evaluation of data on SR and OSS collected in time-of-flight (ToF)

measurements of a set of films composed of immiscible polymer layers: protonated

poly(methyl methacrylate) and deuterated polystyrene, undergoing a decomposition

process upon annealing. Joint SR and OSS data analysis was performed by the use of

a quick and robust originally developed algorithm including a common absolute scale

normalization of both types of scattering, which are intricately linked, constraining

the model to a high degree. This, particularly, makes it possible to readily distinguish

between different dewetting scenarios driven by either the nucleation and growth of

defects (holes, protrusions, etc.), or by thermal fluctuations of the buried interface

between layers. Finally, the 2D OSS maps of particular cases are presented in dif-

ferent spaces and qualitative differences are explained, allowing to distinguish also

qualitatively the in-plane structure of long-range order, correlated roughness and bulk

defects by a simple inspection of the scattering maps prior to quantitative fits.

1. Introduction

Neutron reflectometry (NR), and X-ray reflectometry (XRR), are important tech-

niques to probe condensed matter phases and, in particular, the properties of buried

interfaces in thin films not easily accessible with other techniques. Each of these tech-

niques has their own advantages. They can be applied in either specular and/or off-

specular regimes, thus delivering either depth profiles of scattering length density

(SLD) ρ = Nb, where N is number density and b is the scattering length, or probing

SLD in-plane variation. It is important that real part b′ of neutron scattering lengths

b = b′− b′′, which can be either positive or negative for different chemical elements or

isotopes, and the imaginary part b′′ ≥ 0 are precisely measured and well tabulated for
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almost all nuclei.2 Therefore NR directly access nuclear number density distributions

of reflecting materials, whereas X-rays probe the number density profiles of electrons,

depending on the chemical composition.

Specular XRR and NR are nowadays well established techniques with routine appli-

cation, ranging from magnetic (Zabel et al., 2007) to soft matter (Daillant & Gibaud,

2009) and biological (Fragneto et al., 2018) thin films and layered structures. Despite

the substantially higher brilliance and flux of modern synchrotron sources of X-ray

radiation, both techniques often deliver similar results. However, due to the ability to

deuterate macromolecules (i.e. exchange hydrogen atoms with deuterium) and thus

achieving a contrast even between chemically identical species, NR is especially useful

for studying various soft matter systems (Penfold et al., 1997). The other essential

advantage of neutrons is their deep and non-destructive penetration into condensed

matter, permitting to probe layers and interfaces deeply buried inside thick films or

bulk materials. This is particularly useful for investigation of liquid-liqiud and liquid-

air interfaces, as well as films freely floating at the surface, or displayed inside liquid

environment (Jablin et al., 2011). Such studies are possible due to the fact that the

absorption length labs = (Nσabs)
−1, which is inversely proportional to the neutron

absorption cross section σabs = b′′2, is quite small for the vast majority of nuclei.3

The imaginary part b′′ of the complex scattering length is usually a few orders

of magnitude smaller than the modulus |b′| of its real part b′. Therefore, for the

case b′ > 0 the extinction length of neutrons lext = 1/
√

4πNb′ is commonly much

smaller than the absorption length. Moreover, extinction and absorption lengths for

neutrons are appreciably larger than their values for X-rays and hence probing inner

interfaces well hidden from X-rays under relatively thick capping layers. It is also

worth mentioning that most isotope scattering lengths of thermal and cold neutrons

2 https://www.ncnr.nist.gov/resources/activation/
3 https://www.ncnr.nist.gov/resources/activation/
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are almost independent of the wavelength λ, whereas SLDs for X-rays are strongly

wavelength dependent. This property of neutrons allows for an easier interpretation

of the reflection coefficient R(qz) dependence on the wave vector transfer component

qz = (4π/λ) sinαi normal to the surface, which is varied as a function of the incident

angle αi at fixed λ, or the wavelength λ at fixed αi. The latter opportunity is realized

in time-of-flight (ToF) reflectometry and is of particular convenience in the case of soft

matter. Here we shall concentrate on the interpretation and quantitative description

of ToF data in specular reflectivity (SR) and off-specular scattering (OSS) from solid

polymer films undergoing dewetting.

Presently, there is a multitude of readily available software and established pro-

cedures for detailed analysis of the data on SR from different systems, taking into

account their individual properties and constraints.4 OSS arising due to lateral inho-

mogeneities may either appear as discrete peaks or as a continuous diffuse spectrum,

depending on the shape, size, concentration and positions of inhomogeneities. The

signal coming from fluctuations of interface positions commonly found in soft matter

is usually of the diffuse type. The long-range lateral correlations of such fluctuations

are of statistical origin, meaning that although a specific correlation length exists, the

interface structure is not of a periodic type but rather exhibits a fractal-like shape in

real space. However, in real experiments a well pronounced structure of diffuse scat-

tering is often observed (see below) causing some difficulties in the quantitative data

interpretation so that OSS is simply ignored. The other reason for underestimation of

the role of OSS is usually ascribed to the limited neutron flux and limited detector

efficiency. Meanwhile, both characteristics have been improved significantly in recent

decades (Saerbeck et al., 2018) and nowadays SR is routinely measured down to at

least 6-7 orders of its magnitude. OSS, on the other hand, which is often simulta-

4 http://www.reflectometry.net/reflect.htm#Analysis
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neously recorded with position sensitive detectors (PSD), can be only 2-3 orders of

magnitude smaller than the SR values and therefore it should not be neglected.

Qualitative interpretation and quantitative description of the OSS is more complex

than that of SR, which is measured at the glancing angle of reflection αf = αi. With

the latter constraint SR, R(qz), is a 1D function of the single variable qz and, hence,

readily calculated with arbitrary accuracy for any reasonable SLD profile by optical

considerations (Parratt, 1954; Heavens, 1960). In contrast, the OSS cross section is,

by definition, determined at αf 6= αi and, as we shall see, generally depends on

at least three independent experimental variables: αi, αf and λ, but not on their

unique combination qz. Neither can the OSS cross section be generally presented as a

function of the unique 3D wave vector transfer q, as is usually the case in the Born

Approximation (BA), or as a function of two 1D variables qz and qx, where the latter

is the in-plane projection of the vector q.

Although the neutron OSS cross section is relatively small, it is usually observed

over the range where SR experiences total reflection. Within this range neutron OSS

often becomes readily detectable receiving an appreciable interference enhancement

(Yoneda, 1963), but cannot be treated in the BA. However, as a rule, it can be well

described within the framework of the Distorted Wave Born Approximation (Mott

& Massey, 1949; Newton, 2013) (DWBA) if the reference potential U0(r) is properly

chosen: it should be sufficiently close to the true scattering potential U(r), so that

the deviation ∆U(r) = U(r) − U0(r) can be treated as a perturbation delivering

small corrections to the reference wave function which is a priori known for U0(r).

The choice of the latter is quite obvious for the case of small self-affine roughness

(Sinha et al., 1988) or thermal surface fluctuations, such as capillary waves (Daillant

& Belorgey, 1992). Then the reference potential is naturally chosen as an ideally flat

surface providing optical distortions of incident neutron waves due to SR and refraction
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due to the homogeneous optical potential U0, while OSS generated by roughness-

induced local deviations of the actual surface from its nominal position is taken into

account in the first order of the perturbation theory. Later (Holỳ et al., 1993; Holỳ &

Baumbach, 1994; Tolan, 1998; Daillant & Gibaud, 2009), the DWBA was generalized

for the case of X-ray OSS from rough interfaces in multilayered structures. Since

then, DWBA equations derived for the model of statistical roughness were routinely

employed to describe experimental data on OSS collected in a number of experiments

on various systems.

However, statistical interface roughness is often neither a unique, nor dominating

source of OSS. In many cases principle contribution to OSS is provided by other

sources, such as: long range density, or concentration fluctuations (Lauter et al.,

2016; Lauter-Pasyuk et al., 2003); magnetic, or structural micro-domains (Zabel et al.,

2007); natural, or artificial lateral micro-patterns (Toperverg & Zabel, 2015; Toper-

verg, 2015); dewetting holes (Castel et al., 2020) etc., whenever corresponding SLD

deviations from their mean value are sufficiently strong and of proper lateral and trans-

verse dimensions. Although the DWBA approach can readily be formulated for all the

cases listed above, when interpreting experimental OSS data one needs a reliable proof

for the chosen model. Luckily, OSS is not arbitrarily normalized, but is firmly scaled

by SR. This, as we shall see in the theoretical and illustrate in the experimental sec-

tions of the paper, strongly constrains the choice of the model for consequent fitting

of SR and OSS data.

In the Theoretical section following the Introduction we formulate general principles

of the DWBA based on coherence properties of neutron radiation in the case of graz-

ing incidence kinematics and represent basic DWBA equations in the easy-to-program

form avoiding numerical problems for thicker films. In view of that, we firstly reformu-

late algorithms for calculations of the SR amplitude and neutron wave field amplitudes
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inside arbitrary SLD profiles approximated as a multilayer, or so called ”box model”.

Special attention will be paid to establishing a proper relationship between SR and

OSS. In particular, it shall be demonstrated that, contrary to the general belief that

OSS carries not only the lateral structural information, OSS is heavily dependent on

the neutron wave field distribution deduced from SR (Hafner, 2019). It is therefore

important to devise a description which links the SR and OSS without any addi-

tional scaling parameters matching SR and OSS intensities and hence minimizing the

amount of free parameters (Lauter et al., 2016) to those solely referred to structure

and distribution of lateral inhomogeneities.

In this paper we propose solutions to the aforementioned questions, by first describ-

ing a general workflow of OSS measurements, then qualitatively and quantitatively

(using our own algorithm) discussing various features found in OSS spectra, and finally

showing, how only using the combined SR and OSS information, a clear picture of the

buried morphology can be obtained. In particular, it will be unambiguously shown

that the main source of OSS recorded from immiscible polymer layers systems is not

induced by solely interface roughening, but at certain stages of dewetting dominated

by holes forming on the top surface and/or of protrusions of the layers.

2. Theoretical issues

In this section we first briefly describe kinematics of neutron scattering at grazing inci-

dence, discuss general principles of SR and derive basic equations for SR amplitude

and cross section. Then we consider general properties of SR and describe a version of

Parratt’s (Parratt, 1954) iterative routine used to calculate SR, as well as transmis-

sion and reflection amplitudes, for arbitrary 1D optical potentials approximated by a

sequence of smooth layers with different SLDs. The algorithm presented below aims to

avoid some numerical problems often occurring when the original form of the Parratt
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formalism is applied to describe SR and OSS for sufficiently thick films. In parallel,

we derive equations used to numerically calculate the neutron wave field propagating

inside films and scattered in off-specular directions from lateral inhomogeneities. In

the next subsection DWBA equations for scattering amplitude and cross section will

be derived and thoroughly discussed for a set of particular examples relevant to prob-

lems of polymer film dewetting.

Although the here developed algorithm can be used for the analysis of grazing inci-

dence small angle scattering (GISAS) measured with symmetric pin-hole collimation

of the incident beam, we will mostly focus in the following on SR and OSS when scat-

tered neutron flux is integrated over the in-plane direction perpendicular to the beam.

Experimentally this corresponds to the case of a very asymmetric beam divergence,

with a loose of this in-plane component and a highly collimated beam perpendicular

to the sample plane as will be explained later. This is typically the case for neutron

reflectometers, but not generally true for X-ray sources, especially on synchrotrons.

Therefore we limit the discussion to neutrons in the following.

2.1. Wave functions at grazing incidence

The standard procedure of SR description assumes that the plane wave imping-

ing from vacuum onto an ideally flat infinite surface at the glancing angle αi = α is

totally, or partially reflected to the glancing angle αf = α and θy = 0 as sketched

in Fig. 1. In the latter case the wave is also partially refracted into the laterally

homogeneous matter below the surface at the glancing angle αrefr. These statements

constitute Snell’s law which follows from two properties of the interaction potential

U(r) = 2πh̄2Nb(r)/m where m is the neutron mass. The first of the properties is that

interaction potential is stationary and does not allow any energy exchange between

a neutron and the sample, hence conserving the length of the incident wave vector:
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|kf | = |ki| = k, where k = (2π/λ). The second property is that interaction potential

U(r) = U(z) depends on solely the 1D coordinate z normal to the surface providing

translational invariance of the medium with respect to its shift parallel to the surface

plane. Such invariance conserves both in-plane projections, kxi = kxf and kyi = kyf of

the incident wave vector k
‖
f = k

‖
i = k‖.

Fig. 1. Scattering kinematics at grazing incidence. The incoming wavevector is ki,

and the outgoing wavevector is kf with their in-plane components k
‖
i and k

‖
f and

out-of-plane projections onto the z− axis pi and pf , respectively. In the case of
specular reflection, the incoming and outgoing glancing angles are equal αi = αf
and the in-plane angle θy = 0 leading to both components qx and qy of the in-
plane wavevector transfer q‖ turn to zero, while the out-of-plane component qz =
2pi = 2pf . In the case of GISANS the angles αf 6= αi and θy 6= 0 lead to wavevector
transfer components qx 6= 0 and qy 6= 0 contributing to the total in-plane wavevector
transfer q‖. In the case of OSS the scattered flux is integrated over the angle θy and

depends on incident, ki, and outgoing, k̃f wavevectors with projections pi = sinαi,
pf = sinαf and kxi 6= k̃xf , where kxi = k cosαi and k̃xf = k cosαf with αf 6= αi.

This means that both in-plane projections qx and qy of the lateral wave vector

transfer, q‖ = k
‖
f − k

‖
i ,

qx = k(cosαf cos θy − cosαi), (1)

qy = k cosαf sin θy, (2)

turn to zero: qx = 0 and qy = 0. Solving this pair of equations one immediately obtains

the Snell’s law for SR: αf = αi = α and θy = 0.
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As a consequence, the normal component,

qz = k(sinαf + sinαi), (3)

of the wave vector transfer q at SR is equal to qz = pi + pf = 2p, where p = k sinα,

while pi = k sinαi and pf = k sinαf are normal projections of wave vectors ki and

kf . Note, that due to the truncation effect of the surface the translational symmetry

of space with respect to a shift along the z−axis in Fig. 1 is violated and the neutron

is able to transfer some momentum h̄qz 6= 0 (but not energy!) to the sample.

The in-plane translational invariance assumed in the above consideration is based

on the continuous medium approximation which totally ignores an atomic structure.

The latter, however, plays a role if the wave vector transfer is comparable with the

reciprocal inter-atomic distances. This is not the case at shallow angles of incidence,

αi � 1 , and scattering, αf � 1, at which qx ≈ (π/λ)(α2
i −α2

f−θ2y), qy ≈ (2π/λ)θy and

qz ≈ (2π/λ)(αi+αf ) are sufficiently small. Moreover, in this subsection we also neglect

large scale surface and bulk inhomogeneities for the moment which dimensions may

be comparable with the experimentally accessible range for the wave vector transfer

components. Their contribution in OSS will be considered in the following subsections.

Due to the superposition principle, the solution of the 3D wave equation with a 1D

potential U(z) can be factorized into the product: Ψ0(r) = eik
‖r‖

ψ0(z), where in empty

space above the surface

ψ0(z) = eipz +Re−ipz. (4)

Here the first term, ψi0(z) = eipz, refers to the neutron wave propagating to the

surface, while the second one, ψf0 (z) = Re−ipz corresponds to the wave reflected from

the surface with the reflection amplitude R = R(qz). The latter is, generally, a complex

function of only the normal component qz = 2p of the 3D wave vector q.
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Strictly speaking, incident and reflected waves functions,

Ψi
0(r) = eik

‖r‖ψi0(z) and Ψf
0(r) = Reik

‖r‖ψf0 (z), (5)

describe free wave propagation at z ≤ 0, i.e. in upper hemisphere, but in different

asymptotic regimes. The first equation is valid in the limit r‖ → −∞, while the

second one corresponds to the outgoing wave in the limit r‖ → +∞. This silently

assumes that the front of the incident plane wave is not infinite and restricted by a

finite entrance diaphragm excluding interference between incident and reflected waves

at macroscopically large distances from the surface.

Alternatively, in the immediate vicinity above the surface, both waves are simulta-

neously present if the wave function is written in Eq.(4) as a superposition of both

waves: ψ0(z) = ψi0(z) + ψf0 (z). Although equation Eq.(4) is replicated in a number

of text books, it is worth noting that the co-existence of the reflected and incident

neutron waves may, at first sight, contradict the normalization of the neutron wave

function. Indeed, in the interference zone just above the surface the wave field ampli-

tude ψ0(z) ≈ (1 + R). But at the threshold of total reflection R ≈ 1, and then

ψ0(z) ≈ 2, whereas |ψi0| = |ψ0(−∞)| = 1.

2.2. Fresnel equations

The controversy concerning Eq. (4) can be illustrated for the simplest example of

SR from semi-infinite homogeneous media separated from the vacuum by an ideally

sharp and flat surface. Then the explicit expression for the reflection amplitude can

be readily obtained taking into account that a fraction of the incident wave may be

also refracted into the media. Below the surface its propagation is described by the

plane wave,

ψs(z) = Teipsz, (6)
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with the transmission amplitude T = T (qz) and the refracted wave number ps =√
p2 − p2c , which depends on the critical wave number pc = 2

√
πρ of total reflection.

Then conditions for the neutron flux continuity through the surface immediately

yield a pair of equations:

1 +R = T and p(1−R) = psT, (7)

while their solution delivers Fresnel equations for the reflection and transmission

amplitudes:

R =
p− ps
p+ ps

and T =
2p

p+ ps
. (8)

From the first equation it follows that the reflection amplitude R(p) is a real function

of p for positive and purely real SLD. At p > pc it asymptotically decays as p−2

in the limit p � pc. Therefore, over the range p > pc the reflected wave is exactly

in-phase with the incident one at z = 0, and the sum of their amplitude 1 + R >

1, approaching 1 at p � pc when the reflection amplitude approaches zero. If, in

contrast, p tends to the critical edge the reflection amplitude increases reaching the

value R(pc) = 1, where its first derivative diverges as (p−pc)−1/2. Then the wave field

intensity |ψi0(z) +ψf0 (z)|2 = 4 at z = 0 and p = pc, while oscillating as a function of z

at fixed p > pc and vice versa.

Within the same range p > pc the transmission amplitude T (p) is also a real function

of p approaching the asymptotic value T = 1 at p� pc, but increasing up to the value

T (pc) = 2 and revealing the same type of threshold singularity as R(pc) = 2. Hence,

at p→ pc the wave field intensity |ψt(z)|2 also increases by the factor four at p = pc,

where its wave number ps turns to zero and the neutron field becomes homogeneously

distributed everywhere in the matter below the surface.

Over the interval 0 < p < pc the reflection amplitude R = |R|eiχr becomes a

complex function of p with the absolute value |R| = 1 and the phase χr is negative
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monotonically increasing from χr = −π at p = 0 up to χr = 0 at p ≥ pc. In the same

interval the transmission amplitude T = |T |eiχt is also a complex function of p. Its

absolute value, |T |, linearly approaches zero at p = 0, while monotonically increasing

up to |T | = 2 at p = pc, where it reveals a cusp like maximum, approaching asymptotic

value |T | = 1 at p� pc. The phase χt turns to zero in either of the two limits p→ 0

and p� pc reaching a minimum value χt = −π/4 at p = pc/2.

Below the critical edge the refracted neutron field is often called a evanescent wave,

although it just exponentially decays into depth of material, but with no in-plane

propagation as follows from the consideration in the next sub-section.

2.3. Interference and flux conservation

In order to resolve possible confusion with the fact that the wave field intensity may

exceed that of the incident wave it is important to emphasize that the enhancement

of the transmission coefficient e.g. up to a value |T |2 = 4 is a direct consequence of the

constructive interference between incident and reflected waves at p > pc where both

waves are perfectly in-phase, while at p = pc their amplitudes equal 1. As a result,

above the surface the wave field intensity oscillates so that |ψ(z)|2 = 4 cos2 ϕc(z),

where ϕc(z) = pcz is the phase of the wave function at p = pc. Below the surface the

wave field intensity |ψ(z)|2 = 2(p/pc) exp(−1
2 |ps|z) exponentially decays with depth

of the reflecting material over the whole range p < pc reaching its maximum value

|ψ(pc)|2 = 4 independent of z at p = pc. As we shall see, the enhancement of the wave

field intensity, or probability density, is visualized in the Yoneda (Yoneda, 1963) effect

in OSS discussed below.

The fact that the wave field amplitudes in Eqs.(4,6) may exceed 1 does not, con-

tradict to the normalization of wave functions if one considers the probability current,

or flux density j(r), but not the probability |Ψ(r)|2 itself. Indeed, the flux density is
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defined as a vector,

j(r) =
i h̄

2m
lim
r→r′

{
Ψ(r)[∇′Ψ∗(r′)]− [∇Ψ(r)]Ψ∗(r′)

}
, (9)

which tangential component j‖ = v‖ is just equal to the corresponding component

of the neutron velocity vector v = h̄k/m and is conserved either above, or below the

surface. At the same time, its normal component incident onto the surface is equal

to: jrz = vz, while the reflected one, jz = −vz|R|2, has opposite sign of the velocity

component vz = h̄p0/m. Substituting Eq.(6) into Eq.(9) one can obtain the equation

for the flux density jtz = vtz|T |2 exp(−2p′′z) of neutrons propagating below the surface

with velocity vtz = h̄p′/m proportional to the real part of the complex wave number

p, and exponentially decaying with depth of the material with the rate proportional

to its imaginary part p′′.

Integrating reflected and transmitted flux over corresponding beam cross sections

and normalizing their sum to total incident flux one can readily formulate the total

flux conservation law as follows:

|R|2 + (p′s/p)|T |2e−2p
′′
s z = 1. (10)

This equation formally agrees with the Fresnel Eqs.(8). For purely real SLD the second

term in Eq.(10 ), describing the contribution of the transmitted beam vanishes at

p ≤ pc, while |R|2 = 1. This means that although the neutron field below the critical

edge edge tunnels into the medium for a distance in the order of the extinction length

lext = p−1 it does not propagate along the surface, being totally reflected into the upper

hemisphere. Above the critical edge, i.e. at p0 ≥ pc, both reflected and refracted waves

contribute to the total flux conservation so that |R|2 + (ps/p)|T |2 = 1.

In the case of a non-zero imaginary part of the SLD the difference between the

right and left hand sides of Eq.(10) determines the absorption coefficient Ka. The

latter, as well as reflection and transmission coefficients, crucially depend on e.g. the
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SLD profile. Regretfully, analytical solutions of the wave equation are know only for

a very few examples of SLD depth profiles. However, by stratification, numerically

exact solutions for SR can be obtained for arbitrary 1D SLD distributions by the use

of readily available software.5 In the following one of the most popular algorithms of

such calculations is discussed in view of its further application in the calculations of

OSS.

2.4. Distorted waves in layered structures, Parratt formalism

The algorithm of calculations of reflection and transmission amplitudes, as well as

neutron wave field distribution within an arbitrary SLD profile, is based on the approx-

imation of the SLD depth profile ρ(z) by a histogram corresponding to a sequence of

N homogeneous layers as depicted in Fig.2.

Fig. 2. Schematic of a multilayer sample stratified into N layers (n=1,..,N) along the
z-axis with scattering length densities (SLDs) Nbn and interface roughness σn at
positions zn, sandwiched between the top phase (SLD=Nb0) and bottom phase
(SLD=NbN+1). The wave vector projections on the z-axis pn are noted for the
incoming (i) and outgoing (f) waves schematically shown as downwards and upwards
traveling to signify the physical meaning of the 16 combination of the transverse
scattering form factor calculated later.

5 http://www.reflectometry.net/reflect.htm#Analysis
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Hence, the SLD of the film:

ρ(z) =
N∑
l=1

ρl(z), (11)

is represented to arbitrary precision as a Riemann sum over layer SLDs ρl(z) = ρl

which are constant for zl−1 ≤ z < zl. This constant, ρl, can be chosen as the mean

SLD value,

ρl =
1

dl

∫ zl

zl−1

dzρ(z), (12)

averaged over the lth layer thickness dl = zl − zl−1.

At z ≤ z0, where z0 = 0, i.e. above the film front face of the layer stack, ρ(z) = ρ0

is the SLD of the front phase, e.g. air, while at z ≥ zN+1 the SLD ρ(z) = ρN+1 = ρ

corresponds to the SLD of the sub-phase, e.g a homogeneous substrate.

The wave function ψ(z) of the neutron propagating through such a system is also

written as a Riemann sum of plane waves:

ψ(z) =
N∑
l=1

(
tle

ipl(z−zl−1) + rle
−ipl(z−zl−1)

)
(13)

where tl = tl(pl) and rl = rl(pl) are amplitudes of transmission into the lth layer and,

respectively, reflection from its back interface. Both amplitudes are defined within

the segments zl−1 ≤ z < zl as complex functions of the complex wave numbers pl =

(p2 − p2lc)1/2 depending on the critical wave numbers plc = 2
√
πρl of total reflection.

In the upper phase, e.g. air, above the front face of the multilayer, ψ(z) = ψ0(z) is

given in Eq.(4), while in the sub-phase, e.g. substrate, ψ(z) = ψt(z) is determined by

Eq.(6).

Taking into account the neutron flux continuity through each interface one can write

down the following system of coupled pairs of equations:

eiϕltl + e−iϕlrl = tl+1 + rl+1 , (14)

pl
(
eiϕltl − e−iϕlrl

)
= pl+1 (tl+1 − rl+1) , (15)
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in which at 0 < l ≤ N complex phases ϕl = pldl are gained by the neutron wave

traveling through the lth layer, while in accordance with Eqs.(4,6) t0 = 1, r0 = R,

tN+1 = T , and rN+1 = 0. This system contains 2(N + 1) linear equations with respect

to 2(N+1) transmission and reflection amplitudes, including R and T . Therefore it can

be readily solved by methods of linear algebra, e.g. by means of a recursion procedure

known as the Parratt formalism (Parratt, 1954). Applied to the ratio Rl = rl/tl this

yields:

Rl =
rFl,l+1 +Rl+1

1 + rFl,l+1Rl+1
e2iϕl (16)

with the Fresnel amplitudes of reflection,

rFl,l+1 =
pl − pl+1

pl + pl+1
, (17)

from the interface between the lth and (l + 1)st layers.

Taking further into account that rN+1 = RN+1 = 0, from Eq.(16) one immediately

receives the explicit expression: RN = rFN,N+1 exp(2iϕN ) for the normalized reflection

amplitude RN . Then, substituting it back into Eq.(16) yields the expression for RN−1,

and so on, until the iteration procedure delivers equations for all amplitudes Rl, and

finally, for the reflection amplitude R = R0 of the whole multilayer.

In parallel, one can readily derive a recursion equation for transmission amplitudes

in Eq.(13):

tl+1 = eiϕl
tFl,l+1tl

1 + rFl,l+1Rl+1
, (18)

which uses the same denominator as Eq.(16), and the Fresnel transmission amplitudes:

tFl,l+1 =
2pl

pl + pl+1
. (19)

Finally, one can also calculate the array of reflection amplitudes rl = Rltl and the wave

field intensity |ψ(p0, z)|2 as a function of the wave number p0 at depth z. Note that

Eqs.(16–19) contain exponential factors. At pl ≥ plc they oscillate with frequencies
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inversely proportional to layer thicknesses due to real parts ϕ′l of phases ϕl gener-

ating thickness oscillations, or Kiessig fringes, on the reflectivity curve and quite a

complicated interference pattern of the wave filed distribution displayed in Fig. 3.

At the same time, the imaginary parts of the phases ϕ′′l may become rather large

below the critical edge of total reflection from sufficiently thick layers. This does not

cause any numerical problem for computation of the amplitudes tl and rl, as in our

version of the recursive procedure the imaginary parts ϕ′′l are always positive and

hence exponential factors in Eqs.(16–18) may become small, but never large. In con-

trast, numerical problems may emerge while computing wave functions in Eq.(13). In

this case exponentially small reflection amplitudes rl are multiplied by exponential

factors which may simultaneously become huge due to negative imaginary parts of

phases −pl(z − zl−1) of reflected waves. The resulting products are, in reality, nei-

ther exceptionally small or large, but may cause numerical instability due to the lost

accuracy at their multiplication.

The numerical problem outlined here is quite relevant for the particular cases dis-

cusses below, as our systems are commonly composed of relatively thick layers with

high (deuterated) SLDs. The problem can be easily solved via redefinition of the reflec-

tion amplitudes rl = eiϕl r̃l via the auxiliary amplitude r̃l. Then instead of Eq.(13) the

wave function is determined by the equation:

ψ(z) =
N+1∑
l=1

(
tle

ipl(z−zl−1) + r̃le
i(ϕl−pl(z−zl−1))

)
, (20)

where r̃l = R̃ltl, zl−1 < z ≤ zl and the auxiliary function,

R̃l =
rFl,l+1 +Rl+1

1 + rFl,l+1Rl+1
eiϕl , (21)

is expressed via the already computed numerator and denominator arrays.
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Fig. 3. Wave field |ψ(p, z)|2 distribution over wave numbers p0 = p and depth z inside,
above and below the h-PMMA/d-PS polymer bilayer on a silicon wafer plotted along
with the SLD profile histogram.

An example of the wave field distribution |ψ(p, z)|2 calculated in accordance with

Eq.(20) for a hydrogenated poly(methyl-methacrylate)/deuterated polystyrene (h-

PMMA/d-PS) polymer bilayer on a silicon substrate, plotted in Fig. 3 shows a feature-

rich picture. Indeed, above the surface, i.e. at z < 0, the wave field with high inci-

dent wave numbers p0 rapidly oscillates with a frequency matching the thickness

d1 = 350 nm of the top h-PMMA layer with a low SLD and a critical wave number

pc1 = 3.5 × 10−3Å−1. However, within the range pc1 < p < pc2, lower than the criti-

cal value pc2 = 8.7 × 10−3Å−1 of the deuterated 10 nm thick d-PS layer, oscillations

above the surface become distorted due to interference between incident and reflected

waves. Finally, below pc1 the neutron wave intensity above the surface is enhanced by
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a factor 4 revealing almost the same behavior as discussed above for total reflection

from semi-infinite matter: in this range the neutron wave with p0 < pc1 exponentially

decays into the thick PMMA layer reaching its back interface. However, the most

interesting effect is seen within the top layer in the range pc1 < p < pc, with the

critical wave number for silicon pc = 5.1× 10−3Å−1. In this range the waves refracted

into the PMMA layer by tunneling though the d-PS barrier strongly interfere with

the wave reflected from the Si substrate. Such interference results in a dramatic, up

to 2 orders of magnitude, enhancement of the neutron wave intensity inside the top

layer. This effect looks similar to that observed (Wolff et al., 2019) in a resonance well

potential and used to enhance the sensitivity to incoherent neutron scattering from

hydrogen contained in a thick vanadium layer sandwiched between two iron layers.

In the following section this effect is used to enhance OSS from inhomogeneities in

polymer layers during dewetting.

2.5. Bulk defects and interface roughness

Although the algorithm described above can be, in principle, used for arbitrary SLD

profiles formally approximated by a sequence of sufficiently thin homogeneous slabs,

the practical choice of those slabs is often determined by real interfaces separating

layers with different SLDs. In many cases real interfaces are not perfect, but reveal

some roughness, while real physical layers are not perfectly homogeneous, but may

contain various kinds of ”bulk defects” due to e.g. frozen thermal fluctuations, struc-

tural domains, inclusions of foreign phases and other imperfections. However, a well

collimated and monochromatic neutron wave impinging onto a macroscopically flat

film at shallow angles almost totally averages out scattering in all directions except

for that of specular reflection and refraction. If the latter optical effects overwhelm

any scattering from defects, then the optical considerations above apply providing
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exact solutions for the SLD profile represented by the same Eq.(11) in which ρ(z) is

substituted by the mean SLD ρ(z) = 〈ρ(r‖, z)〉 averaged over the lateral coordinate

r‖, while the SLD of the layer ρl in Eq.(12) denotes the mean SLD averaged over the

layer volume.

In the case of sufficiently thick layers two types of imperfections can be distinguished

already via the analysis of SR, i.e. those are homogeneously distributed over the entire

layer depth, or concentrated at the interfaces. In the former case of ”bulk defects” the

mean SLD of the layer ρl does not coincide with the nominal value, often quantifiable

by positions of critical edges of total reflection, or deduced from the fit of SR to

the theoretical model. In contrast, interface imperfections such as roughness, surface

waves, etc., do not modify the SLD of layers, but suppress interference fringes and

decrease the reflectivity at high qz. Such a classification of defects assumes that there

exists two different length scales: the larger one determined by the layer thicknesses

dl over which laterally averaged the mean SLD ρ(z) = ρl is essentially constant, and

the smaller one, σl � dl, ascribed to the lth interface widths between neighboring lth

and (l+ 1)st layers, and which is due to the fluctuation of the true interface position.

The latter, zl(r‖), depends on the lateral projection x and y at a given lateral radius-

vector r‖, and separates materials with SLD ρl+1 above the interface at z > zl(r‖)

from those with SLD ρl at z ≤ zl(r‖) below the lth interface.

Assuming that zl−1(r‖) < zl(r‖) < zl+1(r‖), i.e. that neighboring interfaces never

cross, one can separate the actual interface coordinate into two parts: zl(r‖) = zl +

hl(r‖), where zl = 〈zl(r‖)〉 is the laterally averaged interface coordinate and hl(r‖)

denotes the deviation of the true interface position from its mean value zl, determined

by the equation 〈hl(r‖)〉 = 0. Then the root mean square (r.m.s.) value σl =
√
〈h2l (r‖)〉

can be attributed to the effective width of the lth interface. Usually, it is assumed that

height fluctuations hl(r‖) are randomly distributed in accordance with the normal law
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with dispersion σl. In this case the mean SLD profile ρl(hl) = 〈ρl(r‖, hl)〉 through the

interface is described by the equation:

ρl(hl) =
ρl + ρl+1

2
+
ρl − ρl+1

2
erf(hl/

√
2σl), (22)

via the Gauss error function and the corresponding SLDs ρl−1 and ρl in the bulk of

neighboring layers.

Unfortunately, no analytical solution for such a SLD profile is available. Therefore,

alternative approximated solutions are proposed (see discussion in (Tolan, 1998)). One

of them is based on the representation of the SLD profile in the interface region via the

histogram, as described above. The other and more popular approach assumes (Nevot

& Croce, 1980) that the result of interface smearing can be described introducing

Debye-Waller (DW) like factors: exp(−2plpl+1σ
2
l ) for the Fresnel reflection amplitude

rFl,l+1, and exp{−(pl − pl+1)
2σ2l /2} for the Fresnel transmission amplitudes tFl,l+1 in

Eqs.(16,18). Surprisingly, such a simple ansatz describes the behavior expected for

reflection and transmission amplitudes not only qualitatively, but often provides an

excellent description of experimentally measured neutron reflectivities with a set of

reasonable values for σl used as fitting parameters. This fact, however, cannot unam-

biguously prove a validity of the ansatz, and e.g. guarantee that DW factors extracted

from the fit are equal to those in Eq.(22).

Indeed, the Fresnel equations, as well as the Parratt formalism, are formulated

for ideally sharp interfaces separating materials with homogeneous SLDs. Only then

the solution of the wave equation can be represented in the form of Eqs.(13,20), or

Eqs.(4,6). If, on the other hand, the SLD smoothly varies within some range hl ∼ σl of

the interface, then the wave function should also be continuous over this range along

with its first and second derivatives. However, the second derivative of solutions in

Eqs.(13,20), or Eqs.(4,6) are not continuous and, strictly speaking, cannot be used for

gradual interfaces with the smearing σl ∼ p−10 , while in the limit σlp0 ≥ 1 the quasi-
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classical, or Wentzel-Kramers-Brrillouin (WKB) approach (Landau & Lifshitz, 1989)

applies. In practice, this limit can hardly be accessed with NR, while most data on e.g.

OSS are usually collected over the range close to the critical edges of total reflection

p0 ∼ pcl. There the SLD smearing plays a minor role in the wave function behavior

and the solution for sharp interfaces, as we shall see, can be used for a rather precise

description of OSS.

2.6. Cross section of specular reflection

All considerations above, as well as Eq.(10), actually, assume that the footprint of

the incident beam at the surface is smaller than the surface area S0, i.e. the sample is

under-illuminated. Then the differential cross sections of SR can be defined as:(
dσ

dΩ

)
SR

= SSR(αi)|R(qz)|2δ(αi − αf )δ(θy), (23)

where the area SSR = SSR(αi) is equal to the incident beam cross section Sb, so

that the total cross section of SR integrated over the solid angle is: σtotR = Sb|R|2.

At sufficiently low incident angles αi = αf , however, the sample may become over-

illuminated. Then a part of the incident beam bypasses the sample and the visible

area of the sample surface SSR(αi) is smaller than Sb. As a result, the sum in the right

hand side of Eq.(10) is equal to the illumination factor ΦSR(αi) = SSR(αi)/Sb ≤ 1. In

view of that, it is convenient to introduce instead of the SR cross section in Eq.(23) a

dimensionless ratio ISR = ISR(αi − αf , θy) of the SR cross section normalized to the

area Sb:

ISR = ΦSR(αi)|R(qz)|2δ(αi − αf )δ(θy), (24)

for which the integral over over angles αf and θy is the probability of SR at a given

incident angle and wavelength. The pre-factor ΦSR(αi) can be calculated for any line

shape of the surface frame and of the incident beam footprint. In the simplest case of

rectangular shape, ΦSR(αi) is determined by a single parameter: the crossover angle
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of total illumination α0, which obeys the equation sinα0 = Sb/S0. Then ΦSR(αi) =

sinαi/ sinα0 if αi < α0, while ΦSR(αi) = 1 when αi ≥ α0. In the case of α0 > αc,

instead of the plateau of total reflection at αi < αc one observes a linear increase of

SR for monochromatic measurements which reaches a maximum value at α0 = αc and

then decreases again.

It is usually argued that one of advantages of the ToF mode in reflectometry, e.g.

used in the present study, is that, in contrast to angular dispersive mode, it does not

require precise knowledge of the illumination factor. This is partially true, as in ToF

mode SR is measured as a function of the wavelength λ at a fixed incident angle, so

that ΦSR(α) is just a normalization constant. In addition, usually the sample is under-

illuminated in ToF mode, making ΦSR(α) = 1. In any case, absolute normalization of

the SR cross section becomes important when it is measured simultaneously with the

OSS, as the illumination factor differs from that of SR. Moreover, due to the presence of

OSS, part of the neutron flux is lost from the SR and transmission channels. Such losses

are usually small and can be, if necessary, taken into account in the second order of

the DWBA via the optical theorem (Toperverg et al., 2000), resulting in an additional

contribution to the imaginary part of the SLD. On the contrary, Eq.(10) regulates only

the redistribution between reflected and transmitted parts of neutron flux formalizing

the basic ”sum rule”. This rule should be satisfied for an arbitrary homogeneous 1D

SLD distribution across the film body, if both SR reflection |R|2 and transmission |T |2

are measured and computed. One of the most popular algorithms for doing so delivers

not only the reflection, but simultaneously the transmission amplitude, as well as the

wave field distribution inside the film as is described in the previous subsection.
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2.7. Resolution and coherence

Before discussing OSS in detail it is important to mention that the SR consideration

above is essentially based on the concept of an ideal plane wave interacting with an

ideally flat infinite surface. Therefore, Eq.(23) is, rigorously speaking, valid in the limit

of S0 →∞ and Sb →∞. On the other hand, it was assumed that the front of the inci-

dent wave is limited in area, e.g. by being framed by an entrance diaphragm. Such a

diaphragm is set as close as possible to the sample and is should be sufficiently wide to

transmit sufficient neutron flux and to minimize a possible contribution from Fraun-

hofer diffraction on the diaphragm and/or sample edges. Simultaneously, it should

be narrow enough to avoid the above mentioned interference between incident and

reflected waves while minimizing over-illumination of the sample. In principle, one

can readily find a compromise between these mutually contradictory requirements.

On the other hand, the main assumption on the perfect coherence of neutron radi-

ation is quite far from reality: neutrons are created within the macroscopically sized

moderator in random moments of time and propagate in free space as spherical waves

diverging from random points in the source volume. Nonetheless, on the long flight

path to the sample fronts of these waves become substantially flattened. A sequence

of diaphragms, or slits placed on this path selects the wave propagation direction, and

hence angles of incidence αi distributed around their nominal value αi with uncer-

tainty δi depending on slit dimensions and distances between them. Similarly, the

direction of scattering αf is determined as αf with a spread δf depending on the

detector acceptance, e.g. the cell size of a position-sensitive detector (PSD), and the

sample-to-detector distance. In addition, the in-plane scattering angle θy is distributed

around its nominal value θy with (usually large) uncertainty δy. Last but not least, a

spread δλ in the wavelength distribution around its mean value λ depending on the

monochromator properties, or chopper system in ToF mode discriminating neutrons
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over their wavelengths λ, determines the absolute values k = ki = kf of the wave

vectors.

All these uncertainties are taken into account via convolution of the SR cross section

in Eq.(23) with the resolution function W = W (αi − αi, αf − αf , θy − θy, λ − λ) of

four independent variables, so that experimental data on SR can be compared with

the SR cross section plotted as a function of any pair of variables, e.g. αi and αf at

fixed λ and integrated over θy, or αf and λ at fixed αi in the ToF mode.

Such convolution can be readily accomplished assuming that the resolution function

is factorized into the product: W = WiWfWyWλ, where Wi(f) = Wi(f)(αi(f) − αi(f)),

Wy = Wy(θy − θy), and Wλ = Wλ(λ − λ). Then the normalized reflected neutron

flux is represented as a product, ISR = Wy(θy)ISR, of two functions: Wy(θy) and the

function

ISR =

∫
dαiWifΦSR(αi)

∫
dλWλ|R(qz)|2, (25)

determining the reflected flux integrated over angles θy, αi and αf with the resolu-

tion function Wif = Wi(αi − αi)Wf (αi − αf ), and the spectral function Wλ. Due to

the δ−function in Eq.(24) the integration over the azimuthal angles θy is removed

and yields the factor Wy(θy) describing the lineshape of the incident beam in the

y−direction. Usually, SR is measured in the slit collimation relaxed in θy aiming to

increase incident flux, while outgoing flux is integrated over the angle θy. As a result,

the measured SR flux ISR = ISR(αi, αf , λ) depends on three experimental variables,

although the reflection coefficient |R(qz)|2 in Eq.(25) is a function of the single com-

bination qz = (4π/λ) sinαi of two theoretical variables λ and αi.

The double integration in Eq.(25) has to be calculated numerically for each experi-

mental point in 3D space with coordinates αi, αf and λ inserting the model function

for |R(qz)|2 and distribution functions Wi, Wf and Wλ computed for particular instru-

ment parameters depending on the mode of operation. Then the result can be plotted
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in the form of 2D flux distribution maps: ISR(αi, αf ) at a fixed wavelength λ, or

ISR(αf , λ) at a fixed incident angle αi.

In the first case the SR distribution over the plane with Cartesian coordinate axes

αi and αf is represented as a ridge running along the main diagonal αf = αi of the

map, while the width of the ridge is determined by the widths δf and δi. In the second

case the SR ridge plotted in the map with coordinate axes αf and λ is running parallel

to the coordinate λ at fixed position αf = αi and the width dependents also on the

wavelength.

In fact, the maps represent different cuts of the intensity distribution over the

3D space by that or the other 2D hyper-plane. However, in the case of SR any of

these maps contains the same information about the 1D SLD profile encoded in the

qz dependence of |R(qz)|2. This information is usually extracted via fitting of the

function ISR(qz) in Eq.(25) additionally integrated over the outgoing angles αf . Such

integration results in the 1D function ĨSR(qz) of the nominal wave vector transfer qz.

The general description above can be illustrated by the simple example when the

functions Wi(f) are approximated by the Gaussian functions,

Wi(f) =
exp

[
−(αi(f) − αi(f))2/(2δi(f))2

]
√

2πδi(f)
, (26)

characterized by two parameters (Dorner & Wildes, 2003): the expectation value αi(f)

and the dispersion δi(f). This substantially simplifies numerical calculations without

a significant loss in accuracy.

Indeed, substitution of Eq.(26), into Eq.(25) yields the equation,

ISR(αi, αf , λ) =
e−(αi−αf )

2/(2δ2)

2
√
πδ

ĨSR(α, λ), (27)

which takes the form of a product of two functions. The first is simply the Gaussian

of the difference (αi−αf ) with the mean square dispersion δ =
√
δ2i + δ2f determining

the width of the SR ridge. The second one depends on the weighted sum α = (αiδ
2
f +
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αfδ
2
i )/δ

2 of incident and outgoing nominal angles and is represented as the integral,

ĨSR(α, λ) =

∫
dα

e−(α−α)
2/(2δ

2
)

2
√
πδ

ΦSR(α)|R(α, λ)|2
λ
, (28)

of the product of the Gauss function with the dispersion δ = (δ−2i + δ−2f )−1/2 and

the reflection coefficient |R(qz)|2, where qz = (4π/λ) sinα, averaged over wavelengths.

This integral, as well as averaging over λ, determines the intensity variation along the

SR ridge. In particular it smears out interference features of the reflection coefficient

|R(qz)|2 suppressing high frequency interference fringes arising due to reflection from

interfaces separated by distances greater than the transverse coherence length lz ∼

λ/δ. This length in our ToF experiments varies within the range 0.1 - 5 µm.

In contrast, the coherence length along the x− axis at shallow incidence is typically

extended up to the sub-millimeter range. Indeed, the coherence length lx ∼ 1/δx

is determined by the uncertainty δx in wave vector transfer components qx. This

uncertainty is, in accordance with Eq.(1), mostly related to the width δ of the first

Gaussian factor in Eq.(27), so that δx ≈ qzδ/2. Correspondingly, the coherence length

lx ∼ 2lz/δ � lz.

Note, that the angular divergence of the incident beam over angles θy determined

by the width δy of the function Wy(θy) is usually much higher than δi ∼ δf ∼ δ, so

that δy � δ � δ. Therefore, the coherence length ly ∼ 1/δy � lz � lx is small and

does not exceed 150 nm. This means that the coherence volume, often approximated

by the ellipsoid reciprocal to the resolution ellipsoid, is extremely anisotropic with its

longest principle axis colinear with the x−axis.

Moreover, each coherence ellipsoid covers only a very small percentage of the film

volume. As a result experimentally measured reflectivity is actually an incoherent sum

of SR from different coherent areas. Such incoherent averaging is trivial for laterally

homogeneous films, while it may play an important role when this is not the case

(Gorkov et al., 2020) and the reflection potential varies within the film plane. Then
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the consideration above is only valid for reflection potentials U(z) = 〈U(r‖, z)〉 lat-

erally averaged over the coherence area assuming that the result of such averaging

is the same for all coherence ellipsoids. This may occur when the lateral dimensions

of inhomogeneities, e.g. due to the SLD fluctuations, interface roughness, etc., are

smaller than the coherence length lx, so that each of the individual ellipsoids crosses

a number of inhomogeneities. In this case, deviations ∆U(r‖, z) = U(r‖, z) − U(z)

of scattering potential from its mean value generate OSS considered in the next sub-

section. Alternatively, for inhomogeneities on a scale larger than lx the averaging of

the different reflection potentials has to be carried out incoherently, i.e. summing up of

the (area weighted) reflectivities of each potential rather than averaging the potentials

themselves. In the following we assume that inhomogeneities are much smaller than

lx but still larger than ly.

2.8. Off-specular scattering amplitude and cross section

After the algorithm for computing the reference wave functions is settled for the

mean SLD profile ρ(z) = 〈ρ(r‖, z)〉, averaged over all lateral inhomogeneities, one can

calculate the differential cross section

(
dσ

dΩ

)
OS

= |f(kf ,ki)|2 (29)

of OSS from deviations ∆ρ(r) = ρ(r) − ρ(z) of the SLD. The cross section in this

equation, in contrast to Eq.(23) for SR, is determined by the OSS amplitude’s modulus

squared. The scattering amplitude is, by definition, an amplitude of spherical waves

diverging from the source of scattering and hence, in contrast to the SR amplitude R,

has the dimension of length. In the first order of the DWBA it is defined as a matrix

element:

f(kf ,ki) = −
∫

drΨf (−kf , r)∆ρ(r)Ψi(ki, r), (30)
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of transition between initial and final neutron states distorted by the mean optical

potential.

These states are described by wave functions factorized, as in Eq.(5) above, into

products:

Ψi(ki, r) = eik
i
‖r‖ψi(z) & Ψf (−kf , r) = e−ik

f
‖r‖ψf (z), (31)

of plane waves freely propagating parallel to the surface with the wave vectors ki‖

and −kf‖ , while neutron propagation in the orthogonal direction above the surface

is described by the transverse wave functions ψi(z) = ψ(z, pi) and ψf (z) = ψ(z, pf ),

where pi = k sinαi and pf = k sinαf .

Here it is worth noting that the wave function Ψf (−kf ) in Eq.(30) corresponds to

the wave propagating in the direction opposite to the scattered wave, and has little

to do with the ”time reversed” state (Sinha et al., 1988; Durniak et al., 2015). The

latter would require complex conjugation, but not just changing a sign in front of

the wave vector kf pointing into the direction from the sample to the detector. The

difference between time and space reversal becomes obvious below the critical edge of

total reflection where the transverse component of the wave vector becomes totally

imaginary. Then complex conjugation does not affect decaying exponents, while ”space

inversion” does.

The OSS cross section in Eq.(29) has a dimension of area and in principle can be

directly compared with SR in Eq.(23). The latter is, however, defined only at αf = αi

and θy = 0, turning to zero otherwise, while the former is a continuous function of

αf , αi and θy. This is actually not a problem if one recognises that the quantities to

be compared are simultaneously measured cross sections convoluted with the same

resolution function.

In particular, the measured probability of SR ISR in Eq.(25) should be compared

with the corresponding dimensionless mean value, IOS = IOS(αi, αf , θy, λ), defined as
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the integral,

IOS =

∫
dαiWi(αi − αi)

∫
dαfWf (αf − αf )ΦOS(αi)JOS, (32)

where ΦOS is the illumination factor for OSS and the mean value I
y,λ
OS = I

y,λ
OS(αf , αi).

The last term in eq. 32 is defined via the OSS cross section:

JOS =

∫
dθyWy(θy − θy)

∫
dλWλ(λ− λ)

1

SOS

(
dσ

dΩ

)
OS
, (33)

averaged over the azimuthal angle θy and the wavelength spread, and normalized to

the sample area SOS = SOS(αi) illuminated by the incident beam.

Such normalization is due to the fact that the OSS cross section is proportional

to the area SOS and results in the OSS illumination factor, ΦOS(αi) = SOS(αi)/Sb

in Eq.(32). This factor is, in contrast to the similar factor ΦSR introduced above in

Eq.(24), constant ΦOS = S0/Sb = 1/α0 � 1 at low angles of incidence αi ≤ α0.

Due to this factor, OSS is dramatically enhanced with respect to that of SR in the

over-illumination regime often employed in monochromatic NR. If alternatively, the

sample surface S0 within the range αi > α0 becomes under-illuminated (which is

usually the case in ToF NR) then the enhancement factor becomes ΦSR = 1/αi, while

still remaining quite large, but is reduced proportionally to the ratio α0/αi ≤ 1. This

reduction occurs just because a part of the sample at αi > α0 becomes shadowed by

entrance slits and hence does not scatter neutrons.

Here we recall that the OSS cross section within the DWBA generally depends on

four independent variables αi, αf , θy and λ, or four combinations of these variables:

qx from Eq.(1), qy from Eq.(2),

pi =
2π

λ
sinαi and pf =

2π

λ
sinαf . (34)

However, when presenting OSS data usually only three parameters qz given in Eq.(3),

qx and qy are used. All four running parameters are, in principle, accessible in the
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2D ’pin-hole’ collimation employed in experiments on Grazing Incidence Small Angle

Scattering (GISANS) (Lauter et al., 2016; Durniak et al., 2015; Hexemer & Müller-

Buschbaum, 2015; Theis-Bröhl et al., 2008; Theis-Bröhl et al., 2011). In this case two

dramatically different lateral scales are probed simultaneously: the large one in qx and

the smaller one in qy direction, but on the cost of reduced incident flux due to the fine

in-plane collimation.

We will not go deeper into discussions on the GISANS cross-section, but in the

following we will describe the OSS flux IOS = IOS(αi, αf , λi) integrated over angles

θy as it is measured in the case of slit collimation. Hence the flux will depend on

only three variables, and not on four, as IOS, while being still described by the same

Eq.(32) in which the auxiliary function JOS is substituted by the following integral:

JOS =

∫
dλWλ(λ− λ)

1

SOS

(
dσ

dΩ

)y
OS
, (35)

where the bar over the scattering cross section denotes integration over the angle θy.

This integration assumes that the resolution in y−direction is relaxed, so that the

coherence length ly ≤ ξ, while the integral of Wy(θy − θy) over θy turns to unity.

Note that this assumption is not necessarily valid if the resolution in y−direction

cannot be sufficiently relaxed, which may be the case on modern synchrotron X-ray

reflectometers, or if the detector acceptance angle is too small.

At the same time OSS can be well resolved in orthogonal direction, i.e. in angles αf

and αi, given the lateral coherence length lx is larger than the correlation length ξ of

SLD fluctuations.

2.9. OSS transverse form-factor in the DWBA

The DWBA cross section of OSS from layered structures into the upper hemisphere,

can be readily calculated by the use of transverse wave functions (see Eqs.(31)) deter-

mined by Eq.(20) in which transmission amplitudes, tl, are substituted by til = tl(pi),
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or tfl = tl(pf ), while reflection amplitudes, r̃l, are changed for r̃il = r̃l(pi), or r̃fl =

r̃l(pf ), respectively. The phases ϕl in Eq.(20) are substituted by phases ϕil = pildl, or

ϕfl = pfl dl, depending on the wave numbers:

pil = (p2i − p2cl)1/2 or pfl = (p2f − p2cl)1/2, (36)

with the incident wave number, pi = k sinαi, determined by the angle of incidence

incidence αi, and the scattered wave number, pf = k sinαf , determined by the angle

of scattering αf 6= αi.

The wave functions in Eqs.(31) for the layered model can be calculated substitut-

ing the layer’s SLDs by their mean values ρl(z) ≈ ρl defined in Eq.(12), while SLD

deviations ∆ρ(r) are approximated with the same accuracy by the Riemann sum:

∆ρ(r‖, z) ≈
N∑
l=1

∆ρl(r‖), (37)

in which ∆ρl(r‖) = ρl(r‖) − 〈ρl〉. The mean value ρl(r‖) averaged over the layer

thickness is defined in Eq.(37) by the equation,

ρl(r‖) =
1

dl

∫ zl

zl−1

dzρ(r‖, z), (38)

similar to Eq.(12), while the lateral averaging denoted by angular brackets is custom-

arily defined as:

〈ρl〉 =
1

SOS

∫
dr‖ρl(r‖). (39)

Further substitution of these equations and Eqs.(31) into Eqs.(30) yields the general

DWBA expression for the scattering amplitude,

f(q‖; pf , pi) = −
N∑
l=1

dl∆ρl(q‖)F
⊥
l (pf , pi), (40)

as a sum of ”partial” amplitudes fl(q‖; pf , pi) of scattering from inhomogeneities in

each layer l. These amplitudes are products of three factors. The first one is the layer
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thickness dl determining the dimension of a length for the scattering amplitude, while

the other two factors are dimensionless.

The second factor,

∆ρl(q‖) =

∫
dr‖e

−iq‖r‖∆ρl(r‖), (41)

is the 2D Fourier transform of SLD deviations ∆ρl(r‖). This factor is a function of the

in-plane projection q‖ of the wave vector transfer q. Due to the definition of the lateral

average in Eq.(39) ∆ρ(0) = 0 and hence the scattering amplitude f(0; pf , pi) = 0.

The third factor in definition Eq,(40),

F⊥l (pf , pi) =
[
(tfl t

i
l + r̃fl r̃

i
l)Fl + (tfl r̃

i
l + r̃fl t

i
l)F̃

]
, (42)

is composed of four combinations of transmission and reflection amplitudes multiplied

by oscillating Laue-type functions,

Fl =
ei(ϕ

f
l
+ϕi

l) − 1

i(ϕfl + ϕil)
and F̃l =

eiϕ
f
l − eiϕi

l

i(ϕfl − ϕil)
, (43)

in which phases ϕfl = pfl dl and ϕil = pildl are determined by wave numbers pf and pi

in Eqs.(36) and the layer thickness dl.

The factor F⊥l in Eq.(42) takes into account optical distortions of incoming and

scattered neutron waves in the mean layer potential before and after scattering on the

SLD deviations ∆ρl. It contains four terms proportional to all products of incident

and scattered wave amplitudes, either both transmitted, tfl t
i
l, through the front face

of the layer l, or both reflected r̃fl r̃
i
l from its back face, as well as cross products tfl r̃

i
l

and r̃fl t
i
l of transmission and reflection amplitudes. The sum of the two first terms

in Eq.(42) is multiplied by the oscillating function Fl = Fl(p
i
l + pfl ) which decays at

high values of the sum ϕil + ϕfl of phases, while Fl = 1 at ϕil + ϕfl = 0. Similarly, the

function F̃l = F̃l(p
i
l, p

f
l ) decays at high values of the difference ϕil − ϕ

f
l , while F̃l = 1

at ϕil = ϕfl .
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Further substitution of the scattering amplitudes in Eq.(30) yields the expression

for the DWBA OSS cross section in Eq.(29):

(
dσ

dΩ

)
OS

= SOS

∑
ll′

G⊥ll′(pf , pi)G
‖
ll′(q‖). (44)

The OSS cross section is therefore proportional to the area SOS of the sample illu-

minated by the neutron beam and to the weighted double sum of products of the

dimensionless form-factors: the transverse, G⊥ll′(pf , pi), and the lateral one, G
‖
ll′(q‖).

Fig. 4. The transverse form-factor calculated for the thick top layer of the same
h-PMMA/d-PS bilayer on a silicon substrate as used to illustrate the wave field
distribution in Fig. 3.

The partial transverse form-factor,

G⊥ll′(pf , pi) = F⊥l (pf , pi)F
⊥∗
l′ (pi, pf ), (45)
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in Eq.(44) is expressed via products of the function Fl for the lth layer and the complex

conjugate F⊥∗l′ for the layer l′. These products, G⊥ll′ = G⊥ll′(pf , pi), in the sum in Eq.(44)

are functions of two variables independent of each other being components pi and pf

of incoming and outgoing wave vectors ki and kf .

The transverse form-factor’s dependence on pi and pf can be visualized in a 2D

map shown in Fig. 4. The map, resembling a Chladni nodal pattern, is calculated

for the contribution G⊥11(pf , pi) of the top thick layer for the same model as has

been used for Fig. 3. The map exhibits a detailed pattern demonstrating an integral

effect of sixteen terms contributing to the single ingredient G⊥11(pf , pi) of the sum

in Eq.(44). An example of the analysis of different contributions is presented in the

Supporting Information (SI). Here we only mention that OSS is substantially enhanced

within the ranges pc2 ≤ pi ≤ pc1 and/or pc2 ≤ pf ≤ pc1. The amplitudes of incident

and/or scattered waves in Fig. 3 acquire an appreciable interference enhancement,

which becomes most significant at pi ≈ pf , i.e. along the ridge running the main

diagonal, where the SR would be situated (excluded from the map).

All features in Fig. 4 are solely due to the reference layered structure, the parame-

ters of which are determined from the fit of SR. Therefore, at first sight, it does not

provide any extra information about in-plane inhomogeneities. This, however, is not

not completely true and, as is illustrated in the Supporting Information, an analy-

sis of different features in the maps of transverse form-factors is quite important in

determining the depth location of lateral inhomogeneities causing OSS and therefore

excluding or corroborating the model used for the SR fitting, similar to an additional

scattering contrast in SR.
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2.10. OSS lateral form-factor in the DWBA

The new information inaccessible by SR is encoded in the lateral form-factor:

G
‖
ll′(q‖) = dldl′

∫
dr‖e

−iq‖r‖gll′(r‖). (46)

It is proportional to the correlator which is the 2D Fourier transform of the in-plane

pair correlation function of SLD deviations. This function can be generally defined as

a 2D integral:

gll′(r‖) =
1

SOS

∫
dr′‖∆ρl(r‖ + r′‖)∆ρ

∗
l′(r
′
‖), (47)

running over the sample surface area SOS illuminated by the neutron beam. The

integrand here is a product of the SLD deviations and its image shifted by the in-

plane radius-vector r‖. Hence the integrand in Eq.(47) is proportional to the area of

their overlap, as is illustrated in Fig.5 for an example of the layer containing inclusions

of foreign material in the form of cylinders, or discs, with height equal to the layer

thickness dl and randomly distributed over the layer plane.

The overlap area is proportional to the number of inclusions and hence the sam-

ple surface area illuminated by the incident beam. Therefore the normalization con-

stant SOS in Eq.(47) is cancelled out and the correlation function gll′(r‖) is indepen-

dent of SOS. Strictly speaking, the definition of the correlation function gll′(r‖) =

〈∆ρl(r‖)∆ρ∗l′(0)〉 in Eq.(47) holds for statistically homogeneous matter under the

hypothesis of self-averaging in the ”thermodynamic limit” SOS → ∞. In this limit

a contribution of surface boundaries into the integrals in Eq.(47) and Eq.(46) can be

neglected. This is, actually, well justified if the correlation length ξ determining a dis-

tance |r‖| ≤ ξ at which correlations are significant, is much smaller than the surface

linear dimensions.
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Fig. 5. Illustration of the integrand in Eq.(47): the product of SLD deviations ∆ρ∗l′(r
′
‖)

and its conjugated image shifted by a distance r‖ along the x-axis, ∆ρl(r‖ + r′‖).

Below: The image profile along the line y = y′ = const.

In general, parameters determining the in-layer correlation function may vary from

layer to layer and, in particular, the correlation length ξ = ξl may depend on the layer

number l, while SLD deviations may be correlated in neighboring layers, or through

the whole multilayer stack. This can be taken into account for arbitrary in-plane and

depth-dependent distributions of SLD deviations via choosing a suitable set of layers

in Eq.(44) in accordance with the assumed model for the depth-dependent correlation
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function gll′(r‖). In particular, if deviations in different layers are not correlated then

the correlation function gll′(r‖) = gll(r)‖δll′ and the sum in Eq.(44) contains only

diagonal elements with l = l′. If, alternatively, deviations are correlated over a certain

number of layers with an out-of-plane correlation length ν exponentially decaying

when |l − l′| > ν then instead of the Kronecker symbol δll′ one may introduce the

factor exp(−|l − l′|/ν). Setting the depth-dependent correlation parameter ν � N

results in correlations extended over all layers. The choice of the particular depth-

dependent correlation function and its consequences may be of a particular importance

for heterostructures with large number of layers, detailed consideration of which is far

beyond the scope of this work.

Instead, let us briefly analyse the general behavior of the lateral correlation function

and correlator in the single layer l. First of all, one may expect that at |r‖| � ξl the

correlation function gll(0) = 〈|ρl|2〉− |〈ρl〉|2 is almost independent of coordinate r and

proportional to ξ2l , while in the opposite limit of large distances, |r‖| � ξl, correlations

vanish. This is an immediate consequence of the hypothesis on correlations decoupling

when |r‖| → ∞: in this limit gll(r‖) ≈ 〈∆ρl(r‖)〉〈∆ρ∗l (0)〉 → 0 and the integral

in Eq.(47) tends to zero. Let us also assume that the correlation function decays

exponentially, or faster, so that the integral in Eq.(46) converges. Moreover, let us

suppose that the function gll(r‖) is characterized by the single parameter ξl. Then,

in the limit of low q‖ ≤ ξ−1l the correlator in Eq.(46) G
‖
ll(q‖) ∼ ξ2l (except for the

case q = 0, where it should turn to zero). Correspondingly, the OSS cross section

in Eq.(44) can be estimated at low qx and G⊥ll ∼ 1 as a product SOSd
2
l ξ

2
l |∆ρl|2. The

latter for sufficiently thick layers and extended in-plane correlation length may become

quite large and even exceed the illuminated sample area SOS. If this happens one may

suspect that the BA, as well as the DWBA, fail. This is, however, not the case if

all OSS (or GISANS) is concentrated within a sufficiently small window of scattering
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angles αf � 1 and θy � 1. As a result the total scattering cross section may still be

much smaller than SOS and the DWBA may be still valid.

A particular asymptotic behavior of the integral in Eq.(46) at qx � ξ−1l generally

depends on the decay rate of the correlation function gll(r‖) in direct space, as well

as on global symmetry of the film and the dimension of the Fourier transform. If,

for instance, the function gll(r‖) decays exponentially, or faster (but slower than the

Gauss function) and independent of the direction of the in-plane radius-vector r‖ then

Gll(q‖) decays as q−3‖ for a 2D Fourier transform.

This can be illustrated by the simple example of the model correlation function

gll(r‖) = 〈|∆ρl|2〉 exp (−|r‖|/ξl) matching short and long range correlations via the

’soft exponential cut-off’ of the latter. As we shall see later, this simple function is able

to describe our experimental data introducing a single parameter ξl. This is possible

despite of the fact that the overlap area in Eq.(47) for a single circle in Fig. 5 experi-

ences a rather ’hard cut off’ when the distance between a circle and its shifted image

is equal to the circle diameter. As a consequence, the Fourier transform in Eq.(46)

is expressed via a Bessel function revealing periodic fringes and superimposed with a

q−3‖ decay. However, such fringes are washed out after averaging over a broad distri-

bution of shapes and sizes of cylinders, as well as over their positions (see Supporting

Information (SI) for details).

The 2D Fourier transform in Eq.(46) of the exponential correlation function has the

following explicit form:

G
‖
ll(q‖) = 2π〈|∆ρl|2〉d2l ξ2l [1 + (q‖ξl)

2]−3/2, (48)

providing smooth interpolation between low and high q‖ asymptotic behavior. With

the correlator in Eq.(48) the OSS cross section in Eq.(44) becomes in the low q

limit (q‖ξl � 1, pidl � 1 and pfdl � 1) proportional to the dimensionless factor

2πd2l ξ
2
l 〈|∆ρl(0)|2〉 multiplied by the illuminated sample surface SOS.
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The asymptotic decay of the function in Eq.(48) as q−3‖ is in a full accord with the

Porod law decay rate q−4 which is appropriate for a conventional SANS measured from

3D systems at normal incidence onto the sample surface. Then at q � ξ−1l the Born

Approximation (BA) usually applies (Maleev & Toperverg, 1980) and the scattering

amplitude is proportional to the 3D (but not 2D, as in Eq.(46)) Fourier transform

of the spherically symmetric mean scattering potential. The extra dimension of the

Fourier integral increases the asymptotic decay power of the scattering cross section

in the BA from −3 to −4. In particular, for an exponential decay of the correlation

function the SANS cross section is proportional to the sample area S illuminated by

the incident beam and the dimensionless factor 8π〈|∆ρ|2〉dξ3[1 + (qξ)2]−2 (Cowley,

1987; Runov et al., 1991). Here d denotes the sample thickness, while the squared

Lorentzian, decays as q−4 when q � ξ−1.

Note that the coherence area in SANS experiments with pin-hole collimation is

nearly isotropic in the x− y surface plane parallel to the detector plane. Usually both

in-plane coherence lengths lx ∼ ly may amount up to only a few hundreds of nano-

meters, while the longitudinal coherence length lz � lx ∼ ly in the direction along the

beam and normal to the surface may be extended up to dozens of micrometers. This

is apparently due to the fact that in SANS the longitudinal component qz of the wave

vector transfer is extremely small. Actually, it is usually neglected so that the absolute

value of the wave vector transfer approximates to q ≈ (q2x + q2y)
1/2. In contrast, the

longitudinal component of the wave vector transfer qx in GISANS cannot generally be

neglected, although it is much smaller than two other components qz and qy. Indeed,

in accordance with Fig.1, this component at grazing incidence and scattering is almost

parallel to the x−axis within the surface plane and equal to qx, but not qz as in the

case of SANS. Therefore, as discussed above, the uncertainty δqx is much smaller than

uncertainties δqy and δqz resulting in strong anisotropy of the coherence area within
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the surface plane, so that lx � ly ∼ lz.

Due to this anisotropy GISANS can, in principle, simultaneously probe two dras-

tically different scales, or correlation lengths, in the surface plane: the same scale as

in SANS up to 100 nm in the y−direction direction and the much larger one in the

x−direction. If the lateral correlation length is unique and the on the scale accessible

for SANS then the qx component of the wave vector transfer in Eq.(48) can be safely

neglected, and the lateral form-factor is approximated as: G
‖
ll(q‖) ≈ G

‖
ll(qy).

At the same time, the GISANS cross section, in contrast to that of SANS, crucially

depends on the qz component normal to the surface via the transverse structure factor

G⊥ll′(pf , pi) in Eq.(45). The latter, as explained in the previous Subsection, is mostly

determined by the mean SLD profile laterally averaged over the coherence area, i.e over

lx and ly. Such specific averaging becomes especially tricky in the case of surfaces lat-

erally decorated with a variety of 3D elements of low symmetry (Durniak et al., 2015).

In this case full recovery of 3D shapes from a single 2D y − z (but not x− y) Fourier

transform is hardly possible even in the BA, as it requires to jointly evaluate a set of

GISANS images recorded along principle symmetry in-plane directions via rotating

the sample around its normal. Moreover, the DWBA should be then formulated and

applied for each of those directions taking into account an interplay between coher-

ent and incoherent scattering due to high anisotropy of in-plane coherency. We shall

not address here this challenging problem, but rather concentrate on the easier case

of OSS from a statistically isotropic distribution of inhomogeneities over the surface

plane.

First of all, one may note that, in contrast to SANS and GISANS, the OSS cross

section requires one to calculate the 1D, but not 2D, lateral Fourier transform in

Eq.(46). This is due to the fact that OSS is usually recorded simultaneously and

with the same slit collimation conditions as SR, i.e. with the resolution relaxed along
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y−direction and with the fine collimation in the z−direction. Correspondingly, the

coherence length ly is rather short along y−axis, while lx is dramatically extended

in the x direction, so that coherence ellipsoids degenerate into a set of long and thin

bars, one of which is indicated in Fig. 5 by the double line running parallel to the

x−axis and crossing certain number of lateral inhomogeneities. If the mean distance

between inhomogeneities is much smaller than the coherence length, the OSS cross

section is determined by the former lateral form-factors incoherently summed over

different coherence ellipsoids covering the sample surface. Alternatively, interference

between scattering from different inhomogeneities crossed by an ellipsoid allows to

probe correlations between their positions. In particular, a periodic distribution of

such inhomogeneities would result in Bragg scattering, for which the cross section is,

however, measured as an incoherent sum of cross sections corresponding to different

coherence ellipsoids.

Due to the strong anisotropy of coherence properties, the lateral correlatorGll′(qx, qy)

in Eq.(46) determining the OSS probability in Eq.(35) can be safely substituted by its

value G
y
ll′(qx) integrated over scattering angles θy. Taking into account the fast decay

of the integrand within the range of θy � 1, integration can be readily accomplished

over the projection qy ≈ (2π/λ)θy of the lateral wave vector transfer.

As a result, the 1D function G
y
ll′(qx) is finally expressed via the Fourier transform:

G
y
ll′(qx) = λ

∫
dxe−iqxx gyll′(x), (49)

of the correlation function gyll′(x) = gll′(x, 0) determined by the same Eq.(46), but with

y = 0. From Eq.(49) it follows that for a function gll′(x) decaying at least exponentially

(but slower than a Gauss function for large distances) the correlator G
y
ll′(qx) decays at

qxξl � 1 as q−2x , i.e. much slower than 3D or 2D Fourier transforms of the correlation

function. On the other hand, in the opposite limit qxξl � 1 it is proportional to the

small factor λξl instead of the factor ξ2l in 2D case. This substantially reduces the OSS
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cross section whose value is now estimated as SOS〈|∆ρl|2〉d2l λξl.

As above, the low and high qx asymptotics can be matched with straightforward

calculation of the 1D Fourier transform in Eq.(49) for the case of the exponential form

gyll(x) = gll(0) exp (−qxξl) of the correlation function. Then, instead of Eq.(48), the

correlator,

G
y
ll(qx) = 2〈|∆ρl|2〉d2l λξl[1 + (qxξl)

2]−1, (50)

is proportional to the Lorentz function. It reaches the maximum value at qxξl � 1.

This value is a few orders of magnitude smaller than that in Eq.(48) for GISANS.

Therefore, at first sight, one may suppose that measurements of the GISANS are less

time-consuming than OSS.

This conclusion is, however, not fairly correct. First of all one should admit that

pin-hole collimation significantly reduces neutron flux incident onto the sample sur-

face. Moreover, at sufficiently large ξl ∼ q−1x , ranging between 100 nm and 0.1 mm,

the GISANS signal is usually not resolved in the qy direction, as the scattering in

the y−direction is almost entirely concentrated within the width δy of the resolution

function Wy(θy) in Eq.(32) centered at the position θy = 0. This can be readily con-

firmed via a direct convolution of the correlator in Eq.(48) with the resolution function

providing the same result as Eq.(50).

Hence, pin-hole collimation does not manifest any benefit for large in-plane correla-

tions and just leads to substantial losses in luminosity. Therefore, GISANS is applied

to probe relatively small correlation lengths, ξl ≤ λ/δy, ranging up to ∼ 100 nm,

commensurate with the inverse uncertainty in the wave vector transfer component qy.

In this constraint the absolute maximum of the scattering signal is proportional to ξ2l ,

but by several orders of magnitude smaller than at the large ξl probed by OSS.

The general consideration above is further illustrated in the SI with an example

based on the Cowley-Krivoglaz (Cowley, 1950; Krivoglaz, 1969) theory for diffuse
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scattering from decaying binary alloys. Their results can be generalized for the case

when one, or some number of bilayers comprise two immiscible sub-phases leading to

lateral domains consisting of one of species embedded into the matrix of the other.

Such decomposition may suddenly occur at a certain temperature sufficient to over-

come the potential barrier between laterally homogeneous and inhomogeneous states.

Alternatively an increase of the statistical interface roughness, e.g. between immiscible

polymer layers in contact through a common interface, may preclude the decomposi-

tion of the layers. In this case it is usually assumed that the ideally flat interface is

perturbed by long wavelength thermal excitations with a continuous spectrum. Such

excitations propagating along the interface in the form of low amplitude waves, e.g.

capillary, are customarily described within the framework of linear hydrodynamics

introducing a cut-off parameter maintaining a small wave amplitude.

This is particularly necessary in the case of capillary waves the amplitude of which

formally diverges logarithmically in the infrared limit. There are several physical rea-

sons for cutting-off wave amplitudes: interaction with a solid flat substrate, gravity,

bending rigidity, finite size effects, etc. However, one may expect that the ideally flat

infinite common interface between layers of immiscible polymers is not a real ground

state of the system. In particular, it may be unstable with respect to highly nonlinear

types of excitations violating lateral continuity of one or both layers via formation

of e.g. microscopic pores reducing the area of unfavorable interfacial contact, if their

lateral dimensions are smaller than the layer thickness. Such pores may be partially,

or totally filled with the neighboring layer material, forming flat cylinder-like protu-

berances entering into, or running though a sufficiently thin layer.
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2.11. OSS from interface roughness in the DWBA

The general procedure of the DWBA described in the Subsection 2.8 can be readily

applied to the case of statistical interfacial roughness perturbing the reference inter-

action potential. The latter has been chosen in the Subsection 2.5 as averaged over

interface position fluctuations hence proving smooth variation of SLD between its val-

ues ρl−1 and ρl in neighboring layers. Such variation is often approximated by the

error function in Eq.(22) providing a description of SR from rough interfaces in e.g.

a high q limit. In principle, it can be also used to modify (Tolan, 1998), if necessary,

reference wave functions in Eq.(30) for the amplitude of OSS caused by roughness-

induced SLD deviations ∆ρl(r‖, z) of SLDs from their mean values ρl(z) = 〈ρ(r‖, z)〉.

Then the use of accordingly modified wave functions in the definition in Eq.(30) may

reasonably describe OSS in a broad range of wave vector transfers and also guarantee

that the DWBA OSS amplitude and cross section become zero at q = 0.

On the other hand, at q 6= 0 one can conveniently redefine Eq.(30) in such a way

(Sinha et al., 1988), that each term of the sum,

f(q‖; pf , pi) = −
N+1∑
l=1

∆ρ̃l

∫
dr‖e

−iqr‖Fl(r‖), (51)

running over all interfaces, is proportional to the SLD contrast ∆ρ̃l = (ρl−1 − ρl)

between SLD in the bulk of neighboring layers comprising the (l− 1) rough interface.

The function Fl(r‖) = Fl(r‖; pi, pf ) in Eq.(51),

Fl(r‖) =

z>
l−1∫

zl−1

dzψfl (z)ψil(z)−
zl−1∫
z<
l−1

dzψfl−1(z)ψ
i
l−1(z), (52)

is determined via the difference between two 1D integrals which, however, do not

coexist at the same lateral coordinate r‖. The first of them is running over the z

coordinate from the mean interface at zl−1 up to the actual surface coordinate z>l−1 =

zl−1 + h>l−1 which at a given in-plane coordinate r‖ deviates from the mean interface
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position by a distance h>l−1 = h>l−1(r‖) > 0. Within this range of r‖ the second integral

is zero, wile alternatively, it runs over the interval from zl−1 − h<l−1(r‖) up to zl−1 at

the in-plane coordinates r‖ inside areas of the actual interface displayed below the

mean interface. Within this range of the coordinate r‖ the first integral is equal to

zero.

The integrands in Eq.(52) are equal to products of incoming, ψil(z), and outgoing,

ψfl (z), wave functions distorted in either the mean SLD of the layer l, or functions

ψil−1(z) ψ
f
l−1(z) distorted in the mean SLD of the layer l−1, respectively. Regrettably,

there is no solution known for the wave equation with the error function in Eq.(22)

describing the mean SDL variation in the case of Gaussian roughness.

Therefore, the wave functions of a smooth interface,

ψi,fl (z) = ti,fl eip
i,f
l

(z−zl−1) + ri,fl e−ip
i,f
l

(z−zl−1) (53)

calculated in accordance with Eq.(13), or Eq.(20) are often used instead of the exact

ones (Sinha et al., 1988). These solutions are valid in homogeneous depth-profiles and

can still be used in the interface region where the SLD strongly varies as a function

of depth. This assumption looks quite reasonable in the case of low roughness concen-

trated in the interface vicinity such that its contribution into the integral in Eq.(52) is

small and can be either neglected, or phenomenologically taken into account via mod-

ification of transmission, ti,fl , and reflection,ri,fl , amplitudes by Nevot-Croce factors

(Nevot & Croce, 1980).

The integration in Eq.(52) with wave functions from Eq.(53) can now be readily

resulting in the following equation,

f(q‖; pf , pi) = −
N+1∑
l=1

∆ρ̃lhl−1(q‖)(t
i
l + ril)(t

f
l + rfl ), (54)

describing the OSS amplitude of all possible transitions between waves propagating

in bulk of neighboring layers above and below the interface (l − 1).
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In this equation the function

hl−1(q‖) =

∫
dr‖e

−iqr‖hl−1(r‖), (55)

is the in-plane 2D Fourier transform of the deviation hl−1(r‖) = h>l−1(r‖) − h
<
l−1(r‖)

which randomly varies as a function of the in-plane variable r‖ and changes sign

whenever either h>l−1(r‖), or h<l−1(r‖) turn into zero. This happens when h>l−1(r‖) =

h<l−1(r‖) = 0. Due to this equation the OSS amplitude at f(0) = 0 and does not

contribute to SR.

Further substitution of Eq.(55) into Eq.(54) and Eq.(29) yields the expression,

(
dσ

dΩ

)h

OS
= SOS

∑
ll′

G⊥ll′(pf , pi)G
‖
ll′(q‖), (56)

for the DWBA OSS cross section from rough interfaces.

This expression is similar to that in Eq.(44), in which the transverse form-factor

G⊥(pfi , p
i) in Eq.(45) is substituted by the factor,

G⊥ll′(pf , pi) = (tfl + rfl )(til + ril)(t
f
l′ + rfl′)

∗(til′ + ril′)
∗, (57)

which does not contain oscillating functions Fl and F̃l in Eq.(43). This means that

for OSS arising from roughness only the oscillations of the neutron field coming from

the layer thickness (at constant pi + pf and pi − pf ) are not present, hence providing

an image depicted in Fig.6 smoother than that in Fig. 4 as only enhancements along

constant pi/f values are present. Hence, this qualitative difference between Figs.4 and

6 allows one to distinguish between correlated roughness and bulk defects without any

quantitative analysis when plotting the data in this space. This important tool will

be further illustrated in secs. 3 and 4.

The correlator of SLD deviations G
‖
ll′ given in Eq.(46) is changed in Eq.(56) for the

correlator,

G‖ll′(q‖) = ∆ρ̃l∆ρ̃
∗
l′

∫
dr‖e

−iq‖r‖ g̃ll′(r‖), (58)
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expressed via the 2D Fourier transform of the height-height correlation function g̃ll′(r‖) =

〈hl−1(r‖)hl′−1(0)〉.

Fig. 6. Simulated pattern of the transverse correlator G⊥ll′(pf , pi) in Eq.(57) for l =
l′ = 0 and the same model parameters as used in Figs. 3 and 4.

The latter function is proportional to the 2D Fourier transform of the in-plane

height-height correlation function g̃ll′(r‖) = 〈hl−1(r‖)hl′−1(0)〉 and can be defined as

the 2D integral:

g̃ll′(r‖) =
1

SOS

∫
dr′‖hl−1(r‖ + r′‖)hl′−1(r

′
‖). (59)

If deviations are not correlated at different interfaces then g̃ll′(r‖) = g̃ll(r‖)δll′ and the

integrand in Eq.(59) is a product of the deviation hl−1(r‖) and its image hl−1(r
′
‖+r‖)

shifted along mean interface for the in-plane radius-vector r‖. Hence the integrand in

Eq.(59) is proportional to the area of their overlap.
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From Eq.(59) it is quite obvious that the correlation function g̃ll(0) = σ2l−1 is equal to

the r.m.s roughness squared σ2l−1 = 〈h2l−1〉. One may also expect that at large distances

|r‖|much greater than the correlation length ξl, correlations become decoupled, so that

the correlation function g̃ll(r‖) = 〈hl−1〉〈hl−1〉 → 0 vanishes.

Quite often, roughness of surfaces and interfaces reveal self-affinity and supposed

to behave as a surface fractal (Mandelbrot et al., 1984). In this case the decay of the

correlation function can be described (Sinha et al., 1988) by the fractional exponent:

g̃ll(r) = σ2l−1 exp

[
−
(
r‖/ξl−1

)2H]
, (60)

with r‖ = |r‖| and the Hurst parameter H.

Substituting Eq.(60) into Eq.(58) one can readily obtain an explicit expression for

the correlator G‖ll(q‖) finally determining the OSS cross section in Eq.(56). Such an

expression is, however, not very practical, as the 2D Fourier transform in Eq.(58) has

to be calculated numerically, except for the case when, H = 0.5. Then g̃ll(r‖) decays

in accordance with a simple exponent resulting above in Eq.(48).

Luckily, further simplification of calculations is possible due to the slit kinemat-

ics commonly applied in neutron SR and OSS measurements. Then, as was shown

in the previous subsection, the integration of the OSS cross section in Eq.(56) over

the azimuthal angle θy effectively reduces the dimension of the Fourier transform in

Eq.(58) down to 1D, as in Eq.(49), while the absolute value of the vector r‖ =
√
x2 + y2

in Eq.(60) is substituted with the x−coordinate.

As a result, the 1D diagonal elements Gyll(qx) of the 2D correlator G‖ll′(q‖) integrated

over θy are written in the form:

Gyll′(qx) = 2|∆ρ̃l|2
λξl−1σ

2
l−1

1 + (ξl−1qx)2
δll′ , (61)

similar to those in Eq.(48).

All these N + 1 interface terms, each multiplied with a combination of transmission
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and reflection amplitudes, now give the explicit expression for the OSS differential

scattering cross-section integrated over angles θy. It is clear that the contribution of

each individual interface into the sum in Eq.(56) is quite small being proportional to

σ2l−1, but not to dl
2 � σ2l−1, as in Eq.(50) corresponding to defects spread through

the whole layer thickness. On the other hand, the correlator G
y
ll(qx) in the bulk inho-

mogeneity case is proportional to the concentration of those defects, which may be

small, while roughness is continuous along interfaces.

The other enhancement factor of OSS from roughness is related to possible cor-

relations of interface position fluctuations not only along a single interface, but also

between different interfaces. Then the roughness contribution to OSS grows quadrat-

ically with the number of interfaces in which interface deviations are correlated. Such

correlation can be taken into account via the substitution of the factor |∆ρ̃l|2 by the

product ∆ρ̃l∆ρ̃l′ and the factor σ2l−1 by the product σl−1σl′−1 in Eq.(61) and, finally,

introducing the exponential factor exp (−|zl−1 − zl′−1|/ξ⊥) instead of the Kronecker

symbol. This way one can describe the case when distortions of interfaces separated

by a distance less than ξ⊥ are conformal. If, in particular, ξ⊥ � d then roughness

distortions are conformally correlated throughout the total film thickness d and OSS

is enhanced by a factor (N + 1)2 from all interfaces. Then, for a large number of

interfaces, the OSS cross section may be quite appreciable even in the range pfl σl ≤ 1

and pilσl ≤ 1. This is often the case for periodic multilayers, where OSS is additionally

enhanced along the lines of constant pil + pfl corresponding to SR Bragg conditions,

due to the transverse structure factor G⊥ll′(pf , pi) of the film. Further discussion of this

particular case is beyond the scope of this work.
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3. Representation of reciprocal space

Concluding the theoretical consideration we note that the formalism described here is

self-contained in order to allow the development of fast and stable software, which is in

the following efficiently applied for quantitative evaluation of data on neutron SR and

OSS from a number of polymer films measured in ToF mode. The advantage of the

approach is that time consuming numerical computations are reduced to a minimum

by the use of theoretical models that are analytically available in the needed space.

The only necessary numerical integrations are employed in the convolution of the

normalized sum of SR and the OSS cross sections with the 3D resolution function of

the used instrument setting and in subsequent automatic fitting of data to the result

of the convolution. The least square fitting routine has been applied to raw data

normalized to the neutron wavelength spectrum and collected in rectangular maps

with coordinates αf v.s. λ at fixed angle of incidence αi.

As mentioned above, measured intensity in off-specular neutron scattering I(pi, pf ; qx)

integrated over the azimuthal angle θy is a function of three variables defined in Eqs. 34

and Eq. 1 in which θy is set to zero. Instead of these three physical quantities one can

also use three other independent parameters, which are the raw instrumental ones:

incoming angle αi, outgoing angle αf and wavelength λ. Therefore, the complete recip-

rocal space and thus complete information can only be acquired by varying all the

three parameters. As already mentioned, two experimental techniques exist to record

off-specular neutron scattering, namely the single wavelength measurement with fixed

wavelength λ and the ToF mode with fixed incoming angle αi. Only two variables are

usually varied during either measurement, either αi and αf in the case of the first, or

λ and αf in the case of the second. Therefore the resulting maps can be plotted on

a 2D grid. One should not forget, however, that these 2D maps are only projections

of the 3D experimental space and therefore not unique. The features in the spectrum,
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arising from the physical morphology are purely a function of qx and vice versa, opti-

cal features are purely a function of the two wave vector projections pi and pf . The

magnitude of qx is particularly important, as it varies significantly and is a non-linear

function of the three variables. All this combined means that the measurements of the

same sample will look differently when measured at different wavelengths or incoming

angles. In the case of the calculations presented above, this presents no problem, as

the wavelength and the incoming angle are explicitly taken into account and all the

quantities are always recalculated into the tree independent variables. However, this is

important in qualitative assessment of the measurements, as the origin of the features,

optics or physics, is often hardly distinguishable without a proper calculation.

One possibility to qualitatively distinguish between optical enhancements and phys-

ical structure factors is to convert the raw data into different 2D spaces (Adlmann

et al., 2016) and look for orthogonal intensity lines in each of them. In order to

illustrate this we plot data obtained from a polymer trilayer system comprising a

thin deuterated poly(methy methacrylate) (d-PMMA) film of thickness around 10

nm sandwiched between two layers of hydrogenated polystyrene (h-PS) of thickness

around 150 nm (de Silva et al., 2012). The top layer is dewetting by formation of holes

after 110 min annealing at 160 ◦C. In figure 7, the same measurement is represented in

three spaces (from left to right): (λ, αi + αf ), which is the raw experimental space on

a ToF reflectometer, (pi−pf , pi+pf ), which emphasizes optical distortions and finally

the most common (qx, qz), which emphasizes physical structure. The experimental

OSS data shows a characteristic grid pattern, which is visible in all three space maps.

Given the apparent periodicity of this pattern one might be tempted to qualitatively

ascribe this to long-range order of the sample structure. Consequently this should

produce orthogonal lines in the (qx, qz) representation as shown by the dashed and

dotted lines in Fig. 7 right. When looking at this pattern one might be satisfied with
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this conclusion. But when, on the contrary, plotting the data in (pi−pf , pi+pf ) space,

where the lines of constant q should be highly distorted as shown by the broken lines

in the middle pattern of Fig. 7 it becomes obvious that the striking features seen in

the figures are optical phenomena, arising due to the interference of the neutron field

inside the top layer and spaced according to the layer thickness of this layer bearing

no direct information about the in-plane structure. These optical enhancements are

maximized along lines of constant wave vector (pi−pf and pi+pf ) as shown as dotted

lines for a very similar pattern in Fig 9, which is discussed later. Another conclusion

from the fact that intensity lines along constant pi± pf are present is that there must

be ”bulk” defects present in the top layer as predicted by Fig, 4. If only roughness

correlation was causing OSS then those lines would be missing as illustrated in Fig. 6.

This was indeed the case for this sample as holes crossing the top layer were identified

here by several microscopy techniques (not shown).

Fig. 7. Plots of a trilayer system in three different representations: left (λ, αi + αf ),
center (pi−pf , pi+pf ), and right (qx, qz). These representations are discussed in the
text. In the plots the dashed lines show constant qz and dotted lines show constant
qx. The lines illustrate the features of the off-specular scattering signal arising from
physical correlations.
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4. Comparison with experiments

We have used the combined SR and OSS presented in the previous sections to char-

acterise soft systems which present less defined structures and interfaces if compared

to solid state materials. These aspects constitute a supplementary level of complexity

in the OSS signal analysis. In particular, we have investigated thin polymer films and

the presence of instabilities of the systems. In some cases dewetting via the nucleation

process was observed with OSS originated in different positions of the sample struc-

ture. Samples comprising either two or three immiscible thin polymer layers deposited

onto a silicon substrate were used.

As described in the theoretical section two types of interface structure leading to OSS

are described in this work: i) interface roughness correlated both in-plane, with one

interface, and out-of-plane between interfaces, and ii) inhomogeneities in the SLD

inside the layers.

Concerning i), the polymer-polymer roughness can be decomposed into an intrin-

sic interface width determined by Self Consistent Field theory, related to the Flory-

Huggins interaction parameter between the two polymers and their monomer sizes

which is not giving rise to OSS, and a contribution stemming from thermal fluctua-

tions, i.e. capillary waves (Sferrazza et al., 1997), giving rise to OSS. For a more simple

approach, we will assume that all the roughness determined by SR will give rise to

OSS as mentioned above, and hence we will not distinguish those two contributions

for the sake of clarity. An approach to identifying these different mechanisms has been

presented elsewhere (James et al., 2015).

For some cases the off-specular scattering originating from the polymer/polymer inter-

faces was overshadowed by the OSS from case ii), namely nucleation of holes of the

layers that took place on the top of the film or in the buried polymer layer, as we will

show later.
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Since our goal is to apply the OSS technique to various situations to illustrate the

power of the approach for the study of hidden interfaces, bilayers of immiscible poly-

mer films were prepared and measured after the systems were annealed above the glass

transition temperature (Tg) of the polymers (Tg is around 100 - 110 ◦C for the two

polymers). As materials, we used 150 nm to 360 nm thick poly(methyl-methacrylate)

(PMMA) layers on top of thin (10 nm to 15 nm) polystyrene (PS) deposited on pol-

ished silicon wafers.

From a polymer physics point of view, the instability of thin films may proceed

via spinodal dewetting (Brochard-Wyart & Daillant, 1990; Xie et al., 1998; Higgins

& Jones, 2000), driven by dispersive long-range van der Waals interactions (Reiter

et al., 1999; Seemann et al., 2001a; Seemann et al., 2001b), or via a nucleation process

(Reiter, 1992; Bischof et al., 1996; Sharma & Reiter, 1996; Jacobs et al., 1998; Geoghe-

gan & Krausch, 2003).

If a layer in the system is unstable due to any of the above reasons, it will even-

tually dewet (the film will break down and form droplets at the final stage) when

heated above Tg. The instability can increase spontaneously via a spinodal type pro-

cess (de Silva et al., 2007) if van der Waals forces are unfavorable for example, or

nucleation can take place (Jacobs et al., 1998) if the spreading coefficient is negative

(De Gennes, 1985). If both criteria of instability are met one or the other will start

earlier depending mainly on the density of nucleation sites or other inhomogeneities

present in the film (Pototsky et al., 2005). Note that nucleation seeds can also occur

due to sample preparation - presence of inhomogeneities due to film preparation and

spin coating, where stress can induce plastic deformation (Richardson et al., 2003).

In the cases studied here, we will use chemically untreated silicon surfaces representing

a rather low surface energy. It has been shown that for thin polymer films deposited on

low-energy surfaces, leading to a negative spreading coefficient, heterogeneous nucle-
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ation due to subtle density inhomogeneities inside the polymer, will start and destroy

the film before any spinodal type process can occur (Jacobs et al., 1998). This was

indeed observed for two out of the three sets of samples presented here.

For the purpose of the discussion we divided the systems into three cases, depending

on the final observation:

Case A) Dewetting of the top layer: for this case we have used bilayers composed

of a thin layer of deuterated polystyrene (d-PS) of thickness less than 15 nm cast on

the Si substrate with a capping film of protonated PMMA (h-PMMA) of around 150

nm.

Case B) Dewetting of the buried film: a bilayer system composed of a thin layer of

d-PS of thickness less than 15 nm in contact with the silicon substrate with a thicker

capping layer of h-PMMA of around 360 nm.

Case C) No holes observed: a bilayer system composed of a thin layer of deuterated

polystyrene (d-PS) of thickness less than 15 nm on a silicon substrate with a thicker

capping layer of h-PMMA of around 300 nm.

4.1. Experimental details

The silicon substrates are 5 cm diameter and 0.5 cm thickness. One side was polished

and had a native oxide layer (SiO2) of thickness of around 2 nm and a roughness of

around 0.5 nm. The thickness of the SiO2 was measured with ellipsometry (Beaglehole

Picometer and Horiba spectroscopic M16) prior the polymer deposition. The surfaces

were cleaned by ultrasonication in several organic solvents and Milli-q water, leading

to a surface energy of 26 mJ/m2 (Liesche, 2012).

The first polymer layer was spin coated from a toluene solution; for a bilayer system

the second layer was first spin coated onto a glass slide and, after the floating process,

was deposited onto the first layer. For the trilayer system shown in Sec. 3, since the
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thickness of the thin d-PMMA film was very small, the floating was problematic in

order to get an uniform layer. We therefore deposited this layer directly onto the first

layer via spin coating from an acetic acid solution, and after, the third layer was floated

and deposited. The spin coating of the second layer ensured a good quality trilayer

system as was clearly visible from the refelctivity profiles, which showed the Kiessig

fringes originated from this thin d-PMMA layer. For this trilayer system the molar

mass (Mw) was 630 kDa for the h-PS and 53 kDa for the d-PMMA: this allowed a

viscosity match for the two polymers. For the bilayer systems different combinations

of Mw were used as stated in the text. All the thicknesses were characterized with a

spectroscopic or a laser ellipsometer.

The samples were then annealed above Tg in a vacuum oven at T = 160 ◦C for

different times and then quenched back to room temperature for the neutron scattering

experiments. Spin-coating was done on a Delta6 Süss MicroTec spinning at 500 rpm for

2 s, followed by 3000 rpm for 55 s. The target layer thickness was achieved by varying

the polymer concentration of the deposited solution.

The kinetics of the interface formation and eventually of the breakup process of the

layer was monitored as a function of the annealing time with both SR and OSS that

were performed on the D17 reflectometer in ToF mode (Saerbeck et al., 2018) at the

Institut Laue-Langevin. For SR the relative wavelength resolution ∆λ/λ and angular

divergence ∆αi/αi were both fixed at 1%, whereas for OSS ∆λ/λ was varied between

1% and 4% in the investigated q-range and ∆αi/αi=1.5%. All resolutions are given in

FWHM. In both cases the foot print on the sample was fixed to a square of 30 mm ×

30 mm. The detector was 3.1 m away from the sample and had a pixel size of 1.2 mm

in the relevant direction. SR data was normalized to the incident beam spectrum by

using COSMOS (Gutfreund et al., 2018) and OSS data were normalized by using

LAMP (Richard et al., 1996) and transformed into q or p space by using Överl̊ateren
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(Adlmann et al., 2016) if needed for visualization. OSS fitting was done in λ vs. 2θ

space using the here described algorithm. SR fitting was done in q-space with the here

presented algorithm.

Complementary atomic force microscopy (AFM) images were acquired on an Asylum

Research MFP-3D in tapping mode. The size of scans was 50µm × 50µm using a 512

× 512 grid of square points with a size of 97 nm.

4.2. Instability of the top layer (Case A)

The systems were prepared as described above and were annealed up to 120 minutes

at 160 ◦C. The d-PS layer (Mw= 66 kDa had a thickness of dd-PS = 155 Å, while the

h-PMMA had a molar mass of Mw= 298 kDa and a thickness of dh-PMMA = 1700 Å.

The SR for the bilayer system (DW4) obtained at the different annealing times are

shown in figure 8.
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Fig. 8. Top: Reflectivity of the DW4 PS/PMMA bilayer sample with thin capping
layer, annealed profiles are shifted by factors of 10 for clarity. Bottom: SLD of
the DW4 PS/PMMA bilayer sample with thin capping layer, annealed profiles are
shifted by factors of 10 for clarity. Exact annealing times from shortest to longest:
0 min, 10 min, 15 min, 20 min, 25 min, 30 min, 40 min.

The SR curves were fitted with 2 different models. For short annealing times, the

system can be fitted with a 3-layer model: h-PMMA / d-PS / SiO2. The initial fit

at t = 0 min shows the system as it is, after deposition. Many well-defined Kiessig

fringes, coming from both the thin and thick layers, can be seen, showing a good
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homogeneity of the sample. The roughness between the layers is initially also small,

σ ∼ 5 Å. Annealing the sample, we can immediately see an increase in the roughness at

the polymer-polymer interface, as the well-defined Kiessig fringes start to disappear.

Eventually, they are completely gone, signifying a complete rupture of the buried

layer. After the second annealing step at t = 15 min, in order to maintain the quality

of the fit as before, a 4th layer must be introduced with a thickness dinter. It represents

the extended interfacial region, which is a mixture between the d-PS and h-PMMA.

This signifies the beginning of a breakup of the bottom layer and simultaneously the

dewetting of the top layer.

For all further steps until t = 40 min, the 4-layer model can be used and the mass

conservation in the fits is strictly obeyed. However, when annealing 90 min or longer,

the sample cannot be fitted well with such a model anymore. We consider it to be in

a completely dewetted state, as the Kiessig fringes are completely gone and therefore

cannot be fitted with a simple slab model anymore.



62

[a]

[b]

Fig. 9. Sample Case A: Scattering features in (a) (pi − pf , pi + pf ) and (b) (λ, αi +αf ) space. White
dotted lines mark features arising from the interference between the bottom and the top interface
and are spaced according to the thickness of the top layer. Dashed white lines represent features
caused by the interference of the neutrons, due to the holes present in the top layer. Their spacing
is the same as for the dotted white lines. Gray solid lines mark Yoneda peaks of different materials,
namely Si and h-PMMA. d-PS is not seen, as it is too thin in this example. The vertical white
solid line corresponds to the specular ridge.

A typical OSS measurement of this system is shown in Fig. 9. A qualitative analysis

of the spectrum reveals a grid-like structure when transformed into (pi − pf , pi + pf )

space (see Fig. 9) indicating optical enhancements due to bulk defects as explained

in relation to Fig. 4. The spacing of these enhanced intensity lines corresponds to the

thickness of the top h-PMMA layer giving a hint on the location of the SLD devia-

tions giving rise to this enhancement. Indeed, the interference of neutrons inside this

layer is visible as parallel vertical lines at constant pi − pf marked as dashed lines
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in the figure. The dotted parallel lines at constant pi + pf represent features due to

the interference between the top and bottom interface of the h-PMMA and have the

same spacing as the Kiessig fringes coming from this layer in SR. In essence, from

the qualitative analysis of the OSS map it becomes clear that the top h-PMMA layer

bears significant SLD inhomogeneities giving rise to these scattering enhancements.

This can be explained by the gradual appearance of holes in this layer as can be seen

in complementary AFM pictures taken at later annealing time (Figure S4 in the SI).

We note here that SR was not able to detect the presence of these holes since their

small concentration (at the start of the process) in the protonated polymer (surface

fraction < 5%) does not change the SLD in specular reflectivity within the experi-

mental error. Therefore, although the OSS enhancements in pi, pf space are purely

optical phenomena and, in theory, do not carry any quantitative information beyond

that already obtained by specular fits, the sensitivity of small SLD variations may be

well beyond that of SR and thus could act as an additional scattering contrast in the

co-refinement of SR data, especially for thick films.

Hence, the features marked by the parallel dashed lines at constant pi−pf are caused

by the interference of neutrons inside the top layer due to holes filled with air. As can

be seen in ref. (James et al., 2015), such lines are not visible in stable bilayers, where

only the constant pi + pf lines are present.

In order to quantitatively fit the OSS patterns we used the SR fitting results for the

sample stratification and the following contributions to the OSS. As already men-

tioned, the two shortest annealing times are fitted with a 3-layer model: h-PMMA

on d-PS on SiO2 on Si. For those samples the only source of perturbation, and thus

contribution to the OSS, is the growth of the holes in the top layer (not for the ini-

tial film) and the correlated roughness at the interface between the two immiscible

polymers. As we further anneal the system, the OSS intensity grows and, just as in
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specular reflectivity, a 4-layer model is needed, with the majority of OSS scattering

intensity coming from the larger and larger scattering volume of the extended inter-

facial region between the two polymer layers. Furthermore, the holes in the top layer

are growing and are the dominant contribution to the spectrum. The OSS measured

and calculated intensities for 40 min annealing times is shown in Fig. 10
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Fig. 10. Measurement and DWBA calculation for t = 40 min annealed sample Case A in the (αi +
αf , λ) space. Below left: 1D cuts at different wavelengths indicated in the legend. Bottom right:
schematic of the model. ξ1 corresponds to the size of holes inside the h-PMMA layer and the
in-plane correlation length of the roughness of the h-PMMA surface (both values kept the same),
while ξ2 corresponds to the in-plane correlation length of the roughness at the interface between
the h-PMMA and the interfacial layer (dotted line) and the size of craters inside this layer (both
values kept the same). ξ3 corresponds to the in-plane correlation length of the roughness at and
the interface between the interfacial layer and the d-PS.
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In order to simulate this OSS pattern, we model the following distinct contributions:

first, the top layer is modelled with holes penetrating the whole layer, by assuming an

exponential in-plane correlation function, with a correlation length ξ1 corresponding

roughly to the hole radius. The SLD contrast for the OSS in this layer is that between

pure h-PMMA and air. Since a small concentration of holes (surface fraction < 5%)

would change the SLD in specular reflectivity only within the experimental error,

the concentration ch of holes inside the layer was used as a free fitting parameter in

contrast to all other inhomogeneity fractions that were deduced from the SLDs of the

SR fits. Secondly, in the first two annealing steps, the only other contribution is the

correlated roughness at the interface between the h-PMMA and d-PS, which is also

assumed to follow an exponential in-plane decay with a correlation length ξ2. In all the

other annealing steps, an additional interfacial layer between the two polymers is used

to fit the specular reflectivity and this whole layer is also source of perturbation giving

rise to off-specular scattering. This is also modeled with an exponentially decaying in-

plane correlation length ξ3 with the SLD contrast coming from that of pure d-PS and

pure h-PMMA. An overview of all fitting parameters is given in table S1 in the SI.

4.3. Dewetting of the buried layer (Case B)

Two other bilayer systems, similar to Case A, but with a thicker top h-PMMA layer

were prepared to minimize an eventual influence of the free interface on the underlying

buried polymer-polymer interface and, in particular, suppress the appearance of holes

in the h-PMMA. One of the samples, discussed in this section, already initially had

a lower-than-nominal SLD for the bottom thin layer, namely ρdPS = 5.5× 10−6 Å
−2

,

probably connected to a dewetting process. Its thickness was determined to be dd-PS =

107 Å and molar mass: 60 kDa. It still serves as a very good demonstrator of the

DWBA OSS formalism developed here, as even a relatively unknown morphology can
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be investigated and identified with the proposed workflow for the analysis. This layer

was capped with a dh-PMMA = 3627 Å thick PMMA layer (Mw=310 kDa).

The sample was first measured as prepared and then annealed in 5 min steps at T =

160 ◦C. Annealing the sample, the evolution of the layer breakup is clearly visible (see

figure 11), as the specular fringes connected to the thin bottom layer start to disappear

due to the increase in d-PS/h-PMMA interfacial width, as seen in the density profile

of the bottom figure. At the same time, the SLD of the bottom layer further decreased.
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Fig. 11. Top: NR data (points) and fits (lines) of the bilayer with a thick capping
layer (Case B) for different annealing times as indicated in the legend. Bottom:
SLD profiles of the NR fits in the same color code. The NR and SLD values for the
annealed samples are offset by factors of 10 for clarity.

Considering the model for the OSS simulation, we clearly observe the absence of

the grid-like pattern since the top layer is now not dewetting. Hence the Yoneda-type

scattering (similar to the one observed previously) may come from instability of the

bottom film (de Silva et al., 2009).



68

Fig. 12. OSS experimental data (top left) and simulation (top right) of the Case B
sample in (λ, αi + αf ) space, tannealing = 10 min. Bottom left: 1D cuts at differ-
ent wavelengths as indicated in the legend. Bottom right: schematic of the model.
ξPMMA/air corresponds to the in-plane correlation length of the roughness of the
h-PMMA surface, ξPMMA corresponds to the size of the holes filled with h-PMMA
inside the d-PS layer and ξdPS corresponds to the size of the d-PS phases in between.

Consequently, for the modelling of the OSS, we consider a homogeneous h-PMMA

layer, not giving rise to OSS and a thin bottom d-PS layer assumed to be composed of

two domains, h-PMMA and d-PS, respectively, contributing to OSS. In total there are

3 different sources of OSS modeled that contribute to the total scattering spectrum:

The correlated air/h-PMMA roughness (with a correlation length ξhPMMA/air), h-
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PMMA domains and d-PS domains within the bottom layer, all of them decaying

exponentially. Each of the contributions has its own contrast. Constructing the model,

we assume that the bottom layer comprises laterally phase-separated domains (which

is a reasonable assumption, given that PS and PMMA are immiscible) following the

Ansatz presented in the SI. As the concentration of h-PMMA inclusions in the d-

PS layer is rather high we assume that both domains exhibit a mean size and fit

two independent correlation lengths ξPMMA and ξPS, where the first represents the

average size of the holes filled with h-PMMA and the second the average size of the

d-PS droplets. In accordance to eq. S6from the SI we get the following pair correlator

for the d-PS layer:

G‖(q‖) = c|ρd-PS − ρ|2〈|Fd-PS(q‖)|2〉+

(1− c)|ρh-PMMA − ρ|2〈|Fh-PMMA(q‖)|2〉+

c(1− c)(ρd-PS − ρ)(ρh-PMMA − ρ)〈Fh-PMMA(q‖)Fd-PS(−q‖)ε(q‖)〉, (62)

with c and (1− c) being the d-PS and h-PMMA volume fractions in the layer, respec-

tively, and ρ being the SLD obtained from the specular fit. The cross-position correla-

tion function ε(q‖) is assumed to be a Lorentzian with a correlation length correspond-

ing to the average between the d-PS and h-PMMA correlations: ξcross = ξPMMA+ξPS
2 .

This way, a minimum number of parameters is required as the volume fraction are

defined as:

c =
ρ− ρh-PMMA

ρd-PS − ρh-PMMA
, (63)

with ρd-PS = 6.407× 10−6 Å
−2

and ρh-PMMA = 1.059× 10−6 Å
−2

being the nominal

SLDs of the polymers.

Estimating the initial c of d-PS in the layer following equation S3 from the SI:

c =
5.5× 10−6 Å

−2 − 1.059× 10−6 Å
−2

6.407× 10−6 Å
−2 − 1.059× 10−6 Å

−2 = 0.83 , (64)
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it can be seen that the two phases, the d-PS and h-PMMA respectively, contribute

almost equally, as the d-PS contrast with the mean SLD is lower than that of the

h-PMMA. Examining now the fits of off-specular scattering, shown in Figure 12 for

10 min annealing time, together with the measurements, it can be seen that the model

reproduces the results. An overview of all fitting parameters is given in table S2 in

the SI.

4.4. Bilayer system with no dewetting (Case C)

For the second system mentioned above, no nucleation in any layer was observed.

The SLD of the buried d-PS layer (Mw=60 kDa) was close to nominal and its thickness

was 114 Å, capped with a thick h-PMMA layer (3000 Å), screening possible effects

of the free surface on the buried interface. The SR data (see figure 13) show the

characteristic fringes of the d-PS film and the profile illustrates an increased d-PS/h-

PMMA interface upon annealing: The roughness increases to 24 Å after 10 minutes

annealing. After this first annealing step, no considerable d-PS SLD drop is observable,

indicating that the layer is still homogeneous. Such behavior of the observed SLD

profile signifies that the layers are still homogeneous and only the thermal fluctuations

at the interface are growing, pointing to either the film stability or an early stage of

spinodal dewetting. In such case, one should not detect noticeable change in the SLDs

of the layers, but only the increase in interfacial roughness (Sferrazza et al., 1998).
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Fig. 13. Top: NR data (points) and fits (lines) of the bilayer with a thick capping
layer (Case C) for differet annealing times as indicated in the caption. Bottom:
SLD profiles of the NR fits in the same color code. The NR and SLD values for the
annealed samples are offset by factors of 10 for clarity.

The OSS pattern for 5 min annealing time is shown in figure 14. We can observe

that there is no characteristic grid-like structure on the scattering indicating that holes

are not present for this systems. Rather than any regular structure appearing, there
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is a change in the diffuse spectrum. The only source of OSS in the simulation is the

in-plane correlated roughness at the h-PS/d-PMMA interfaces with an exponentially

decaying correlation length ξPS/PMMA. The data are well reproduced as visible from

the plot and the cut of figure 14. All fit parameters are summarized in Tab. S3in the

SI.

Fig. 14. Top: OSS measurement (left) and calculation (right) for the Case C sample
in (λ, αi + αf ) space, tannealing = 5 min. Bottom left: The corresponding 1D cuts
at different wavelengths as indicated in the legend. Bottom right: schematic of the
model. ξPMMA/dPS corresponds to the in-plane correlation length of the roughness
at the polymer/polymer interface, while σPMMA/dPS corresponds to the out-of-plane
width of this interface.
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5. Conclusion

Full reflectometry, a combination of specular reflectivity and off-specular scattering,

is a technique which yields quantitative information of the 3D structure of the buried

interfaces. Features of length scales spanning several orders of magnitude (from ∼ Å

to ∼ 10 µm) can be observed simultaneously. Combined with the neutron properties,

which are favorable for soft matter research, this makes it a unique tool for in situ

non-destructive investigations. However, due to its nature, the technique can only be

exploited to its full potential by using an advanced analysis workflow, consisting of

robust data reduction and manipulation routines, and advanced analysis methods.

Besides the low neutron flux and 2D detectors, the lack of suitable analysis tools

has significantly held the usage back for more complex systems. The tools that have

been developed in this work are intended to make off-specular analysis more available.

Moreover, they have been backed by experimental validation on model thin polymer

systems. The following was achieved and thoroughly described in this work:

• Implementation and experimental verification of a specular reflectivity Parratt’s

recursive algorithm, allowing for a robust calculation of amplitudes of upward

and downward moving neutrons inside the sample. This is particularly important

in soft matter, as the SLD structure (due to deuteration) often has interchanging

high and low SLD layers, which causes numerical instability if using common

implementations of the algorithm found in literature.

• Derivation and verification of the off-specular differential scattering cross-section,

including low roughness approximation and perturbation located throughout the

layer. Implementation of the findings in a multilayer calculation algorithm with

as few free parameters as possible, similar to specular reflectivity. An exponen-

tial decay of the correlation function in real space has been shown as a very

good approximation to the experimental results analyzed here. The calculation
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is done in the experimental (λ, αi + αf ) space, due to the minimum amount of

convolution steps being involved to properly implement resolution.

• Scaling of specular reflectivity to off-specular scattering for time-of-flight instru-

ments, enabling both the calculation of off-specular scattering intensity in abso-

lute units and simultaneous fitting of specular and off-specular parts. This gives

the ability to not only analyze, but also predict scattering patterns and the

location and intensity of expected features in advance.

• It is shown that the routines that were developed for transformation between

different representations of reciprocal space allow for qualitative (pre-)inspection

of the data. Features dependent on the structure appear parallel in (qx, qz) space,

as the form factor is a function of the lateral wavevector qx. Features dependent

on the interference of neutrons inside the sample, arising from the complex SLD

structure, which is very common in soft matter (e.g. interchanging high and low

SLD), are parallel/orthogonal in (pi − pf , pi + pf ) space and are purely due to

optical enhancements along constant wave vector combinations. It is shown that

parallel intensity lines correspond to ”bulk” defects inside the layers, whereas

orthogonal lines (constant pi/f ) indicate correlated roughness in between the

layers.

• Verification of the above-mentioned algorithms on experimental data from var-

ious Si/PS/PMMA bilayer samples. In particular, the strength of combining

specular and off-specular analysis revealed the presence of holes in some PMMA

capping layers, which would not have been visible by specular analysis only.

The appearance and growth of holes in the buried PS layer, not directly accessi-

ble by microscopy, was followed quantitatively. Finally, the in-plane correlation

length of the buried polymer/polymer roughness was extracted as a function of

annealing time.
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Synopsis

A combined specular and off-specular neutron reflectometry analysis algorithm in absolute
scale is presented. Experimental data from thermally annealed immiscible polymer bilayer
systems is fitted.


