535 research outputs found

    Secular Evolution of Galaxy Morphologies

    Get PDF
    Today we have numerous evidences that spirals evolve dynamically through various secular or episodic processes, such as bar formation and destruction, bulge growth and mergers, sometimes over much shorter periods than the standard galaxy age of 10-15 Gyr. This, coupled to the known properties of the Hubble sequence, leads to a unique sense of evolution: from Sm to Sa. Linking this to the known mass components provides new indications on the nature of dark matter in galaxies. The existence of large amounts of yet undetected dark gas appears as the most natural option. Bounds on the amount of dark stars can be given since their formation is mostly irreversible and requires obviously a same amount of gas.Comment: 8 pages, Latex2e, crckapb.sty macros, 1 Postscript figure, replaced with TeX source; To be published in the proceeedings of the "Dust-Morphology" conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer Dordrecht

    Solar Multi-Scale Convection and Rotation Gradients Studied in Shallow Spherical Shells

    Get PDF
    The differential rotation of the sun, as deduced from helioseismology, exhibits a prominent radial shear layer near the top of the convection zone wherein negative radial gradients of angular velocity are evident in the low- and mid-latitude regions spanning the outer 5% of the solar radius. Supergranulation and related scales of turbulent convection are likely to play a significant role in the maintenance of such radial gradients, and may influence dynamics on a global scale in ways that are not yet understood. To investigate such dynamics, we have constructed a series of three-dimensional numerical simulations of turbulent compressible convection within spherical shells, dealing with shallow domains to make such modeling computationally tractable. These simulations are the first models of solar convection in a spherical geometry that can explicitly resolve both the largest dynamical scales of the system (of order the solar radius) as well as smaller-scale convective overturning motions comparable in size to solar supergranulation (20--40 Mm). We find that convection within these simulations spans a large range of horizontal scales, and that the radial angular velocity gradient in these models is typically negative, especially in low- and mid-latitude regions. Analyses of the angular momentum transport indicates that such gradients are maintained by Reynolds stresses associated with the convection, transporting angular momentum inward to balance the outward transport achieved by viscous diffusion and large-scale flows in the meridional plane. We suggest that similar mechanisms associated with smaller-scale convection in the sun may contribute to the maintenance of the observed radial shear layer located immediately below the solar photosphere.Comment: 45 pages, 17 figures, ApJ in press. A preprint of paper with hi-res figures can be found at http://www-lcd.colorado.edu/~derosa/modelling/modelling.htm

    Rings of Dark Matter in Collisions Between Clusters of Galaxies

    Full text link
    Several lines of evidence suggest that the galaxy cluster Cl0024+17, an apparently relaxed system, is actually a collision of two clusters, the interaction occurring along our line of sight. Recent lensing observations suggest the presence of a ring-like dark matter structure, which has been interpreted as the result of such a collision. In this paper we present NN-body simulations of cluster collisions along the line of sight to investigate the detectability of such features. We use realistic dark matter density profiles as determined from cosmological simulations. Our simulations show a "shoulder" in the dark matter distribution after the collision, but no ring feature even when the initial particle velocity distribution is highly tangentially anisotropic (σθ/σr>>1\sigma_\theta/\sigma_r >> 1). Only when the initial particle velocity distribution is circular do our simulations show such a feature. Even modestly anisotropic velocity distributions are inconsistent with the halo velocity distributions seen in cosmological simulations, and would require highly fine-tuned initial conditions. Our investigation leaves us without an explanation for the dark matter ring-like feature in Cl 0024+17 suggested by lensing observations.Comment: 7 pages (emulateapj), 9 figures. Expanded figures and text to match accepted versio

    A SAURON study of stars and gas in Sa bulges

    Full text link
    We present results from our ongoing effort to understand the morphological and kinematical properties of early-type galaxies using the integral-field spectrograph SAURON. We discuss the relation between the stellar and gas morphology and kinematics in our sub-sample of 24 representative Sa spiral bulges. We focus on the frequency of kinematically decoupled components and on the presence of star formation in circumnuclear rings.Comment: 6 pages, 3 figures; To appear in the proceedings of the "Island Universes: Structure and Evolution of Disk Galaxies" conference held in Terschelling, Netherlands, July 2005, ed. R. de Jong. A high resolution version is available at http://www.strw.leidenuniv.nl/~jfalcon/JFB_terschelling.pdf.g

    Luminous X-Ray Sources in Arp 147

    Get PDF
    The Chandra X-Ray Observatory was used to image the collisional ring galaxy Arp 147 for 42 ks. We detect 9 X-ray sources with luminosities in the range of 1.4 - 7 x 10^{39} ergs/sec in or near the blue knots of star formation associated with the ring. A source with an isotropic X-ray luminosity of 1.4 x 10^{40} ergs/sec is detected in the nuclear region of the intruder galaxy. X-ray sources associated with a foreground star and a background quasar are used to improve the registration of the X-ray image with respect to HST high resolution optical images. The intruder galaxy, which apparently contained little gas before the collision, shows no X-ray sources other than the one in the nuclear bulge which may be a poorly fed supermassive black hole. These observations confirm the conventional wisdom that collisions of gas rich galaxies trigger large rates of star formation which, in turn, generate substantial numbers of X-ray sources, some of which have luminosities above the Eddington limit for accreting stellar-massComment: 9 pages, 5 figure

    A novel physiological role for ARF1 in the formation of bidirectional tubules from the Golgi.

    Get PDF
    Capitalizing on CRISPR/Cas9 gene-editing techniques and super-resolution nanoscopy, we explore the role of the small GTPase ARF1 in mediating transport steps at the Golgi. Besides its well-established role in generating COPI vesicles, we find that ARF1 is also involved in the formation of long (∼3 µm), thin (∼110 nm diameter) tubular carriers. The anterograde and retrograde tubular carriers are both largely free of the classical Golgi coat proteins coatomer (COPI) and clathrin. Instead, they contain ARF1 along their entire length at a density estimated to be in the range of close packing. Experiments using a mutant form of ARF1 affecting GTP hydrolysis suggest that ARF1[GTP] is functionally required for the tubules to form. Dynamic confocal and stimulated emission depletion imaging shows that ARF1-rich tubular compartments fall into two distinct classes containing 1) anterograde cargoes and clathrin clusters or 2) retrograde cargoes and coatomer clusters

    The Formation and Survival of Discs in a Lambda-CDM Universe

    Full text link
    We study the formation of galaxies in a Lambda-CDM Universe using high resolution hydrodynamical simulations with a multiphase treatment of gas, cooling and feedback, focusing on the formation of discs. Our simulations follow eight haloes similar in mass to the Milky Way and extracted from a large cosmological simulation without restriction on spin parameter or merger history. This allows us to investigate how the final properties of the simulated galaxies correlate with the formation histories of their haloes. We find that, at z = 0, none of our galaxies contain a disc with more than 20 per cent of its total stellar mass. Four of the eight galaxies nevertheless have well-formed disc components, three have dominant spheroids and very small discs, and one is a spheroidal galaxy with no disc at all. The z = 0 spheroids are made of old stars, while discs are younger and formed from the inside-out. Neither the existence of a disc at z = 0 nor the final disc-to-total mass ratio seems to depend on the spin parameter of the halo. Discs are formed in haloes with spin parameters as low as 0.01 and as high as 0.05; galaxies with little or no disc component span the same range in spin parameter. Except for one of the simulated galaxies, all have significant discs at z > ~2, regardless of their z = 0 morphologies. Major mergers and instabilities which arise when accreting cold gas is misaligned with the stellar disc trigger a transfer of mass from the discs to the spheroids. In some cases, discs are destroyed, while in others, they survive or reform. This suggests that the survival probability of discs depends on the particular formation history of each galaxy. A realistic Lambda-CDM model will clearly require weaker star formation at high redshift and later disc assembly than occurs in our models.Comment: 14 pages, 10 figures, mn2e.cls. MNRAS in press, updated to match published versio

    Spiral shocks in the accretion disc of IP Peg during outburst maximum

    Get PDF
    In response to our recent discovery of spiral arms in the accretion disc of IP Peg during rise to outburst, we have obtained time-resolved spectrophotometry of IP Peg during outburst maximum. In particular, indirect imaging of HeII 4686, using Doppler tomography, shows a two-arm spiral pattern on the disc image, which confirms repeatability over different outbursts. The jump in HeII intensity (a factor of more than two) and in velocity (~200--300 km/s) clarifies the shock nature of the spiral structure. The HeII shocks show an azimuthal extent of ~90 degrees, a shallow power-law emissivity ~V^{-1}, an upper limit of 30 degrees in opening angle, and a flux contribution of 15 per cent of the total disc emission. We discuss the results in view of recent simulations of accretion discs which show that spiral shocks can be raised in the accretion disc by the secondary star.Comment: 5 pages, 4 figures, MNRAS journal paper. in pres

    Lumpy Structures in Self-Gravitating Disks

    Full text link
    Following Toomre & Kalnajs (1991), local models of slightly dissipative self-gravitating disks show how inhomogeneous structures can be maintained over several galaxy rotations. Their basic physical ingredients are self-gravity, dissipation and differential rotation. In order to explore the structures resulting from these processes on the kpc scale, local simulation of self-gravitating disks are performed in this paper in 2D as well as in 3D. The third dimension becomes a priori important as soon as matter clumping causes a tight coupling of the 3D equations of motion. The physically simple and general framework of the model permits to make conclusions beyond the here considered scales. A time dependent affine coordinate system is used, allowing to calculate the gravitational forces via a particle-mesh FFT-method, increasing the performance with respect to previous direct force calculations. Persistent patterns, formed by transient structures, whose intensity and morphological characteristic depend on the dissipation rate are obtained and described. Some of our simulations reveal first signs of mass-size and velocity dispersion-size power-law relations, but a clear scale invariant behavior will require more powerful computer techniques.Comment: 28 pages, 32 figures. Accepted for publication in A&A. Full resolution paper available at http://obswww.unige.ch/Preprints/dyn_art.htm

    Phosphatidylinositol phosphate kinase type Iγ regulates dynamics of large dense-core vesicle fusion.

    Get PDF
    Phosphatidylinositol-4,5-bisphosphate was proposed to be an important regulator of large dense-core vesicle exocytosis from neuroendocrine tissues. Here, we have examined the kinetics of secretion in chromaffin cells from mice lacking phosphatidylinositol phosphate kinase type Iγ, the major neuronal phosphatidylinositol-4-phosphate 5-kinase. Absence of this enzyme caused a reduction of the readily releasable vesicle pool and its refilling rate, with a small increase in morphologically docked vesicles, indicating a defect in vesicle priming. Furthermore, amperometry revealed a delay in fusion pore expansion. These results provide direct genetic evidence for a key role of phosphatidylinositol-4,5-bisphosphate synthesis in the regulation of large dense-core vesicle fusion dynamics
    corecore