50 research outputs found

    Highly Ordered Titanium Dioxide Nanostructures via a Simple One Step Vapor Inclusion Method in Block Copolymer Films

    Get PDF
    Nanostructured crystalline titanium dioxide (TiO2) finds applications in numerous fields such as photocatalysis or photovoltaics where its physical and chemical properties depend on its shape and crystallinity. We report a simple method of fabricating TiO2 nanowires by selective area deposition of titanium tetraisopropoxide (TTIP) and water in a CVD-based approach at low temperature by utilizing PS-b-PEO self-assembled block copolymer thin film as a template. Parameters such as exposure time to TTIP (minutes to hours), working temperature (~18 to 40 °C) and relative humidity (20 to 70 RH%) were systemically investigated through GISAXS, SEM and XPS and optimized for fabrication of TiO2 nanostructures. The resulting processing conditions yielded titanium dioxide nanowires with a diameter of 24 nm. An extra calcination step (400 – 700 °C) was introduced to burn off the remaining organic matrix and introduce phase change from amorphous to anatase in TiO2 nanowires without any loss in order

    Aza-Cibalackrot: Turning on Singlet Fission Through Crystal Engineering

    Get PDF
    Singlet fission is a photophysical process that provides a pathway for more efficient harvesting of solar energy in photovoltaic devices. The design of singlet fission candidates is non-trivial and requires careful optimization of two key criteria: (1) correct energetic alignment and (2) appropriate intermolecular coupling. Meanwhile, this optimization must not come at the cost of molecular stability or feasibility for device applications. Cibalackrot is a historic and stable organic dye which, although it has been suggested to have ideal energetics, does not undergo singlet fission due to large interchromophore distances, as suggested by single crystal analysis. Thus, while the energetic alignment is satisfactory, the molecule does not have the desired intermolecular coupling. Herein, we improve this characteristic through molecular engineering with the first synthesis of an aza-cibalackrot and show, using ultrafast transient spectroscopy, that singlet fission is successfully "turned on.

    Does 1,8-diiodooctane affect the aggregation state of PC71BM in solution?

    Get PDF
    1,8-Diiodooctane (DIO) is an additive used in the processing of organic photovoltaics and has previously been reported, on the basis of small-angle X-ray scattering (SAXS) measurements, to deflocculate nano-aggregates of [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) in chlorobenzene. We have critically re-examined this finding in a series of scattering measurements using both X-rays and neutrons. With SAXS, we find that the form of the background solvent scattering is influenced by the presence of DIO, that there is substantial attenuation of the X-rays by the background solvent and that there appears to be beam-induced aggregation. All three factors call into question the suitability of SAXS for measurements on these samples. By contrast, small-angle neutron scattering (SANS) measurements, performed at concentrations of 15 mg ml−1 up to and including 40 mg ml−1, show no difference in the aggregation state for PC71BM in chlorobenzene with and without 3% DIO; we find PC71BM to be molecularly dissolved in all solvent cases. In situ film thinning measurements of spin-coated PC71BM solution with the DIO additive dry much slower. Optical imaging shows that the fullerene films possess enhanced molecular mobility in the presence of DIO and it is this which, we conclude, improves the nanomorphology and consequently solar cell performance. We propose that any compatible high boiling solvent would be expected to show the same behaviour

    Ligand-Directed Self-Assembly of Organic-Semiconductor/Quantum-Dot Blend Films Enables Efficient Triplet Exciton-Photon Conversion

    Get PDF
    Blends comprising organic semiconductors and inorganic quantum dots (QDs) are relevant for many optoelectronic applications and devices. However, the individual components in organic-QD blends have a strong tendency to aggregate and phase-separate during film processing, compromising both their structural and electronic properties. Here, we demonstrate a QD surface engineering approach using electronically active, highly soluble semiconductor ligands that are matched to the organic semiconductor host material to achieve well-dispersed inorganic–organic blend films, as characterized by X-ray and neutron scattering, and electron microscopies. This approach preserves the electronic properties of the organic and QD phases and also creates an optimized interface between them. We exemplify this in two emerging applications, singlet-fission-based photon multiplication (SF-PM) and triplet–triplet annihilation-based photon upconversion (TTA-UC). Steady-state and time-resolved optical spectroscopy shows that triplet excitons can be transferred with near unity efficiently across the organic–inorganic interface, while the organic films maintain efficient SF (190% yield) in the organic phase. By changing the relative energy between organic and inorganic components, yellow upconverted emission is observed upon 790 nm NIR excitation. Overall, we provide a highly versatile approach to overcome longstanding challenges in the blending of organic semiconductors with QDs that have relevance for many optical and optoelectronic applications

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29
    corecore