81 research outputs found

    Gray's time-varying coefficients model for posttransplant survival of pediatric liver transplant recipients with a diagnosis of cancer

    Get PDF
    Transplantation is often the only viable treatment for pediatric patients with end-stage liver disease. Making well-informed decisions on when to proceed with transplantation requires accurate predictors of transplant survival. The standard Cox proportional hazards (PH) model assumes that covariate effects are time-invariant on right-censored failure time; however, this assumption may not always hold. Gray's piecewise constant time-varying coefficients (PC-TVC) model offers greater flexibility to capture the temporal changes of covariate effects without losing the mathematical simplicity of Cox PH model. In the present work, we examined the Cox PH and Gray PC-TVC models on the posttransplant survival analysis of 288 pediatric liver transplant patients diagnosed with cancer. We obtained potential predictors through univariable (P < 0.15) and multivariable models with forward selection (P < 0.05) for the Cox PH and Gray PC-TVC models, which coincide. While the Cox PH model provided reasonable average results in estimating covariate effects on posttransplant survival, the Gray model using piecewise constant penalized splines showed more details of how those effects change over time. © 2013 Yi Ren et al

    Ultrafast evanescent heat transfer across solid interfaces via hyperbolic phonon polaritons in hexagonal boron nitride

    Full text link
    The efficiency of phonon-mediated heat transport is limited by the intrinsic atomistic properties of materials, seemingly providing an upper limit to heat transfer in materials and across their interfaces. The typical speeds of conductive transport, which are inherently limited by the chemical bonds and atomic masses, dictate how quickly heat will move in solids. Given that phonon-polaritons, or coupled phonon-photon modes, can propagate at speeds approaching 1 percent of the speed of light - orders of magnitude faster than transport within a pure diffusive phonon conductor - we demonstrate that volume-confined, hyperbolic phonon-polariton(HPhP) modes supported by many biaxial polar crystals can couple energy across solid-solid interfaces at an order of magnitude higher rates than phonon-phonon conduction alone. Using pump-probe thermoreflectance with a mid-infrared, tunable, probe pulse with sub-picosecond resolution, we demonstrate remote and spectrally selective excitation of the HPhP modes in hexagonal boron nitride in response to radiative heating from a thermally emitting gold source. Our work demonstrates a new avenue for interfacial heat transfer based on broadband radiative coupling from a hot spot in a gold film to hBN HPhPs, independent of the broad spectral mismatch between the pump(visible) and probe(mid-IR) pulses employed. This methodology can be used to bypass the intrinsically limiting phonon-phonon conductive pathway, thus providing an alternative means of heat transfer across interfaces. Further, our time-resolved measurements of the temperature changes of the HPhP modes in hBN show that through polaritonic coupling, a material can transfer heat across and away from an interface at rates orders of magnitude faster than diffusive phonon speeds intrinsic to the material, thus demonstrating a pronounced thermal transport enhancement in hBN via phonon-polariton coupling

    A novel method for generating and screening peptides and libraries displayed on adenovirus fiber

    Get PDF
    Capsid-displayed adenoviral peptide libraries have been a significant, yet unfeasible goal in biotechnology. Three barriers have made this difficult: the large size of the viral genome, the low efficiency of converting plasmid-based genomes into packaged adenovirus and the fact that library amplification is hampered by the ability of two (or more) virus to co-infect one cell. Here, we present a novel vector system, pFex, which is capable of overcoming all three barriers. With pFex, modified fiber genes are recombined into the natural genetic locus of adenovirus through unidirectional Cre–lox recombination. Modified-fiber genes can be directly shuttled into replicating viral genomes in mammalian cells. The ‘acceptor’ vector does not contain the fiber gene, and therefore does not propagate until it has received a ‘donor’ fiber gene. Therefore, This methodology overcomes the low efficiency of transfecting large viral genomes and bypasses the need for transition to functional virus. Thus, with a fiber-shuttle library, one can generate and evaluate large numbers of fiber-modified adenovirus simultaneously. Finally, successful fiber genes can be rescued from virus and recombined back into shuttle plasmids, avoiding the need to propagate mixed viral pools. For proof of principal, we use this new system to screen a capsid-displayed peptide library for retargeted viral infection

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Lung macrophage scavenger receptor SR-A6 (MARCO) is an adenovirus type-specific virus entry receptor

    Get PDF
    <div><p>Macrophages are a diverse group of phagocytic cells acting in host protection against stress, injury, and pathogens. Here, we show that the scavenger receptor SR-A6 is an entry receptor for human adenoviruses in murine alveolar macrophage-like MPI cells, and important for production of type I interferon. Scavenger receptors contribute to the clearance of endogenous proteins, lipoproteins and pathogens. Knockout of SR-A6 in MPI cells, anti-SR-A6 antibody or the soluble extracellular SR-A6 domain reduced adenovirus type-C5 (HAdV-C5) binding and transduction. Expression of murine SR-A6, and to a lower extent human SR-A6 boosted virion binding to human cells and transduction. Virion clustering by soluble SR-A6 and proximity localization with SR-A6 on MPI cells suggested direct adenovirus interaction with SR-A6. Deletion of the negatively charged hypervariable region 1 (HVR1) of hexon reduced HAdV-C5 binding and transduction, implying that the viral ligand for SR-A6 is hexon. SR-A6 facilitated macrophage entry of HAdV-B35 and HAdV-D26, two important vectors for transduction of hematopoietic cells and human vaccination. The study highlights the importance of scavenger receptors in innate immunity against human viruses.</p></div
    corecore