812 research outputs found
Current status of the CLIO project
CLIO (Cryogenic Laser Interferometer Observatory) is a Japanese gravitational
wave detector project. One of the main purposes of CLIO is to demonstrate
thermal-noise suppression by cooling mirrors for a future Japanese project,
LCGT (Large-scale Cryogenic Gravitational Telescope). The CLIO site is in
Kamioka mine, as is LCGT. The progress of CLIO between 2005 and 2007 (room- and
cryogenic-temperature experiments) is introduced in this article. In a
room-temperature experiment, we made efforts to improve the sensitivity. The
current best sensitivity at 300 K is about
around 400 Hz. Below 20 Hz, the strain (not displacement) sensitivity is
comparable to that of LIGO, although the baselines of CLIO are 40-times shorter
(CLIO: 100m, LIGO: 4km). This is because seismic noise is extremely small in
Kamioka mine. We operated the interferometer at room temperature for
gravitational wave observations. We obtained 86 hours of data. In the cryogenic
experiment, it was confirmed that the mirrors were sufficiently cooled (14 K).
However, we found that the radiation shield ducts transferred 300K radiation
into the cryostat more effectively than we had expected. We observed that noise
caused by pure aluminum wires to suspend a mirror was suppressed by cooling the
mirror.Comment: 8 pages, 9 figures. Amaldi7 proceedings, J. Phys.: Conf. Ser.
(accepted
Mechanical quality factor of a sapphire fiber at cryogenic temperatures
A mechanical quality factor of was obtained for the 199
Hz bending vibrational mode in a monocrystalline sapphire fiber at 6 K.
Consequently, we confirm that pendulum thermal noise of cryogenic mirrors used
for gravitational wave detectors can be reduced by the sapphire fiber
suspension.Comment: To be published to Physiscs Letters A. Number of pages: 10 Number of
figures: 5 Number of tables:
Parametric instabilities in the LCGT arm cavity
We evaluated the parametric instabilities of LCGT (Japanese interferometric
gravitational wave detector project) arm cavity. The number of unstable modes
of LCGT is 10-times smaller than that of Advanced LIGO (U.S.A.). Since the
strength of the instabilities of LCGT depends on the mirror curvature more
weakly than that of Advanced LIGO, the requirement of the mirror curvature
accuracy is easier to be achieved. The difference in the parametric
instabilities between LCGT and Advanced LIGO is because of the thermal noise
reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica
mirrors with larger laser beams), which are the main strategies of the
projects. Elastic Q reduction by the barrel surface (0.2 mm thickness
TaO) coating is effective to suppress instabilities in the LCGT arm
cavity. Therefore, the cryogenic interferometer is a smart solution for the
parametric instabilities in addition to thermal noise and thermal lensing.Comment: 6 pages,3 figures. Amaldi7 proceedings, J. Phys.: Conf. Ser.
(accepted
Force measurements of a superconducting-film actuator for a cryogenic interferometric gravitational-wave detector
We measured forces applied by an actuator with a YBCO film at near 77 K for
the Large-scale Cryogenic Gravitational-wave Telescope (LCGT) project. An
actuator consisting of both a YBCO film of 1.6 micrometers thickness and 0.81
square centimeters area and a solenoid coil exerted a force of up to 0.2 mN on
a test mass. The presented actuator system can be used to displace the mirror
of LCGT for fringe lock of the interferometer.Comment: 9 pages, 3 figure
Evolution and diversity of the courtship repertoire in the Drosophila montium species group (Diptera: Drosophilidae)
SYW is funded by the National Scientific Foundation of China (31372187). MGR is funded by the NERC, UK (grants NE/E015255/1 and NE/J020818/1).Changes in elements of courtship behaviour can influence sexual isolation between species. Largeâscale analyses of changes, including loss and gain of courtship elements, across a relatively complete phylogenetic group are rare but needed to understand the significance of such changes, for example whether the gain and loss of courtship elements are essentially arbitrary or equally reversible. In most species of Drosophila, courtship, including singing, mainly occurs before mounting as preâmounting courtship. The Drosophila montium species group is unusual because loss of preâmounting courtship and gain of postâmounting one has been detected in this group. Here we provide an extensive analysis on the courtship repertoire and songs of 42 species in this group. Synchronously captured video and audio recordings were analysed to describe courtship patterns and male courtship songs and changes were analysed in a phylogenetic context. Ancestral state reconstruction suggests that a gain of postâmounting courtship singing at the ancestor of this species group has been accompanied with a concurrent decrease in the incidence of preâmounting courtship singing and has led to subsequent further decrease and eventually complete loss of preâmounting courtship song in several lineages. Alongside this evolutionary trend towards postâmounting courtship, sine song and a special type of âhigh pulse repetition songâ have become more widely used for courtship during species diversification in the montium group. It is likely that the elaboration of postâmounting courtship behaviours is associated with changes in the relative importance of preâ and postâmounting components of mating systems, such as sperm competition or cryptic female choice.PostprintPeer reviewe
Indium joints for cryogenic gravitational wave detectors
A viable technique for the preparation of highly thermal conductive joints between sapphire components in gravitational wave detectors is presented. The mechanical loss of such a joint was determined to be as low as 2 Ă 10â3 at 20 K and 2 Ă 10â2 at 300 K. The thermal noise performance of a typical joint is compared to the requirements of the Japanese gravitational wave detector, KAGRA. It is shown that using such an indium joint in the suspension system allows it to operate with low thermal noise. Additionally, results on the maximum amount of heat which can be extracted via indium joints are presented. It is found that sapphire parts, joined by means of indium, are able to remove the residual heat load in the mirrors of KAGRA
5S-IGS rDNA in wind-pollinated trees (Fagus L.) encapsulates 55 million years of reticulate evolution and hybrid origins of modern species
Standard models of plant speciation assume strictly dichotomous genealogies in which a species, the ancestor, is replaced by two offspring species. The reality in windâpollinated trees with long evolutionary histories is more complex: species evolve from other species through isolation when genetic drift exceeds gene flow; lineage mixing can give rise to new species (hybrid taxa such as nothospecies and allopolyploids). The multiâcopy, potentially multiâlocus 5S rDNA is one of few gene regions conserving signal from dichotomous and reticulate evolutionary processes down to the level of intraâgenomic recombination. Therefore, it can provide unique insights into the dynamic speciation processes of lineages that diversified tens of millions of years ago. Here, we provide the first highâthroughput sequencing (HTS) of the 5S intergenic spacers (5SâIGS) for a lineage of windâpollinated subtropical to temperate trees, the Fagus crenata â F. sylvatica s.l. lineage, and its distant relative F. japonica. The observed 4963 unique 5SâIGS variants reflect a complex history of hybrid origins, lineage sorting, mixing via secondary gene flow, and intraâgenomic competition between two or more paralogousâhomoeologous 5S rDNA lineages. We show that modern species are genetic mosaics and represent a striking case of ongoing reticulate evolution during the past 55 million years
Ultra High Energy Cosmology with POLARBEAR
Observations of the temperature anisotropy of the Cosmic Microwave Background
(CMB) lend support to an inflationary origin of the universe, yet no direct
evidence verifying inflation exists. Many current experiments are focussing on
the CMB's polarization anisotropy, specifically its curl component (called
"B-mode" polarization), which remains undetected. The inflationary paradigm
predicts the existence of a primordial gravitational wave background that
imprints a unique B-mode signature on the CMB's polarization at large angular
scales. The CMB B-mode signal also encodes gravitational lensing information at
smaller angular scales, bearing the imprint of cosmological large scale
structures (LSS) which in turn may elucidate the properties of cosmological
neutrinos. The quest for detection of these signals; each of which is orders of
magnitude smaller than the CMB temperature anisotropy signal, has motivated the
development of background-limited detectors with precise control of systematic
effects. The POLARBEAR experiment is designed to perform a deep search for the
signature of gravitational waves from inflation and to characterize lensing of
the CMB by LSS. POLARBEAR is a 3.5 meter ground-based telescope with 3.8
arcminute angular resolution at 150 GHz. At the heart of the POLARBEAR receiver
is an array featuring 1274 antenna-coupled superconducting transition edge
sensor (TES) bolometers cooled to 0.25 Kelvin. POLARBEAR is designed to reach a
tensor-to-scalar ratio of 0.025 after two years of observation -- more than an
order of magnitude improvement over the current best results, which would test
physics at energies near the GUT scale. POLARBEAR had an engineering run in the
Inyo Mountains of Eastern California in 2010 and will begin observations in the
Atacama Desert in Chile in 2011.Comment: 8 pages, 6 figures, DPF 2011 conference proceeding
- âŠ