We evaluated the parametric instabilities of LCGT (Japanese interferometric
gravitational wave detector project) arm cavity. The number of unstable modes
of LCGT is 10-times smaller than that of Advanced LIGO (U.S.A.). Since the
strength of the instabilities of LCGT depends on the mirror curvature more
weakly than that of Advanced LIGO, the requirement of the mirror curvature
accuracy is easier to be achieved. The difference in the parametric
instabilities between LCGT and Advanced LIGO is because of the thermal noise
reduction methods (LCGT, cooling sapphire mirrors; Advanced LIGO, fused silica
mirrors with larger laser beams), which are the main strategies of the
projects. Elastic Q reduction by the barrel surface (0.2 mm thickness
Ta2O5) coating is effective to suppress instabilities in the LCGT arm
cavity. Therefore, the cryogenic interferometer is a smart solution for the
parametric instabilities in addition to thermal noise and thermal lensing.Comment: 6 pages,3 figures. Amaldi7 proceedings, J. Phys.: Conf. Ser.
(accepted