21 research outputs found

    A Synaptic Mechanism for Temporal Filtering of Visual Signals

    Get PDF
    The visual system transmits information about fast and slow changes in light intensity through separate neural pathways. We used in vivo imaging to investigate how bipolar cells transmit these signals to the inner retina. We found that the volume of the synaptic terminal is an intrinsic property that contributes to different temporal filters. Individual cells transmit through multiple terminals varying in size, but smaller terminals generate faster and larger calcium transients to trigger vesicle release with higher initial gain, followed by more profound adaptation. Smaller terminals transmitted higher stimulus frequencies more effectively. Modeling global calcium dynamics triggering vesicle release indicated that variations in the volume of presynaptic compartments contribute directly to all these differences in response dynamics. These results indicate how one neuron can transmit different temporal components in the visual signal through synaptic terminals of varying geometries with different adaptational properties

    Analysis of Transcriptional Regulatory Pathways of Photoreceptor Genes by Expression Profiling of the Otx2-Deficient Retina

    Get PDF
    In the vertebrate retina, the Otx2 transcription factor plays a crucial role in the cell fate determination of both rod and cone photoreceptors. We previously reported that Otx2 conditional knockout (CKO) mice exhibited a total absence of rods and cones in the retina due to their cell fate conversion to amacrine-like cells. In order to investigate the entire transcriptome of the Otx2 CKO retina, we compared expression profile of Otx2 CKO and wild-type retinas at P1 and P12 using microarray. We observed that expression of 101- and 1049-probe sets significantly decreased in the Otx2 CKO retina at P1 and P12, respectively, whereas, expression of 3- and 4149-probe sets increased at P1 and P12, respectively. We found that expression of genes encoding transcription factors involved in photoreceptor development, including Crx, Nrl, Nr2e3, Esrrb, and NeuroD, was markedly down-regulated in the Otx2 CKO at both P1 and P12. Furthermore, we identified three human retinal disease loci mapped in close proximity to certain down-regulated genes in the Otx2 CKO retina including Ccdc126, Tnfsf13 and Pitpnm1, suggesting that these genes are possibly responsible for these diseases. These transcriptome data sets of the Otx2 CKO retina provide a resource on developing rods and cones to further understand the molecular mechanisms underlying photoreceptor development, function and disease

    Understanding the retinal basis of vision across species

    Get PDF
    The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision

    In vivo evidence that retinal bipolar cells generate spikes modulated by light

    No full text
    Retinal bipolar cells have been assumed to generate purely graded responses to light. To test this idea we imaged the presynaptic calcium transient in live zebrafish. We found that ON, OFF, transient and sustained bipolar cells are all capable of generating fast 'all-or-none' calcium transients modulated by visual stimulation

    Spikes in Retinal Bipolar Cells Phase-Lock to Visual Stimuli with Millisecond Precision

    Get PDF
    SummaryBackgroundThe conversion of an analog stimulus into the digital form of spikes is a fundamental step in encoding sensory information. Here, we investigate this transformation in the visual system of fish by in vivo calcium imaging and electrophysiology of retinal bipolar cells, which have been assumed to be purely graded neurons.ResultsSynapses of all major classes of retinal bipolar cell encode visual information by using a combination of spikes and graded signals. Spikes are triggered within the synaptic terminal and, although sparse, phase-lock to a stimulus with a jitter as low as 2–3 ms. Spikes in bipolar cells encode a visual stimulus less reliably than spikes in ganglion cells but with similar temporal precision. The spike-generating mechanism does not alter the temporal filtering of a stimulus compared with the generator potential. The amplitude of the graded component of the presynaptic calcium signal can vary in time, and small fluctuations in resting membrane potential alter spike frequency and even switch spiking on and off.ConclusionsIn the retina of fish, the millisecond precision of spike coding begins in the synaptic terminal of bipolar cells. This neural compartment regulates the frequency of digital signals transmitted to the inner retina as well as the strength of graded signals
    corecore