1,913 research outputs found

    Dynamic mimicry in an Indo-Malayan octopus

    Get PDF
    During research dives in Indonesia (Sulawesi and Bali), we filmed a distinctive long-armed octopus, which is new to science. Diving over 24 h periods revealed that the 'mimic octopus' emerges during daylight hours to forage on sand substrates in full view of pelagic fish predators. We observed nine individuals of this species displaying a repertoire of postures and body patterns, several of which are clearly impersonations of venomous animals co-occurring in this habitat. This 'dynamic mimicry' avoids the genetic constraints that may limit the diversity of genetically polymorphic mimics but has the same effect of decreasing the frequency with which predators encounter particular mimics. Additionally, our observations suggest that the octopus makes decisions about the most appropriate form of mimicry to use, allowing it to enhance further the benefits of mimicking toxic models by employing mimicry according to the nature of perceived threats

    Do it with books: The why and how of reading

    Get PDF
    Children model the illiteracy of the American way

    Female impersonation as an alternative reproductive strategy in giant cuttlefish

    Get PDF
    Out of all the animals, cephalopods possess an unrivalled ability to change their shape and body patterns. Our observations of giant cuttlefish (Sepia apama) suggest this ability has allowed them to evolve alternative mating strategies in which males can switch between the appearance of a female and that of a male in order to foil the guarding attempts of larger males. At a mass breeding aggregation in South Australia, we repeatedly observed single small males accompanying mating pairs. While doing so, the small male assumed the body shape and patterns of a female. Such males were never attacked by the larger mate-guarding male. On more than 20 occasions, when the larger male was distracted by another male intruder, these small males, previously indistinguishable from a female, were observed to change body pattern and behaviour to that of a male in mating display. These small males then attempted to mate with the female, often with success. This potential for dynamic sexual mimicry may have played a part in driving the evolution of the remarkable powers of colour and shape transformation which characterize the cephalopods

    Exploring the 2022 US Midterms

    Get PDF

    Arctic Biodiversity Congress: Co-Chairs report, December 2-4, 2014

    Get PDF
    The Arctic Biodiversity Congress was the largest gathering of people in the history of the Arctic Council. It brought together 450 Arctic scientists, policy-makers, government officials, indigenous peoples, students and industry and civil society representatives to discuss the challenges facing Arctic biodiversity and the most appropriate actions for conservation and sustainable use of the Arctic’s living resources. The Congress highlighted the work of the Conservation of Arctic Flora and Fauna (CAFF) working group and the Arctic Council in circumpolar biodiversity conservation and sustainable use, provided an opportunity to discuss the findings of the Arctic Biodiversity Assessment, 2013, and served as a forum for mainstreaming biodiversity - for ensuring that the 17 recommendations arising from the Arctic Biodiversity Assessment are implemented by not just governments, but by many organizations and people, and across sectors. During the Congress participants had opportunities to advise CAFF on the development of “Actions for Arctic Biodiversity: Implementation of the Arctic Biodiversity Assessment "Recommendations 2013-2021”

    A multiplier peroxiporin signal transduction pathway powers piscine spermatozoa

    Get PDF
    Article publicat sota una PNAS license: https://www.pnas.org/authors/fees-and-licenses#license-to-publishThe primary task of a spermatozoon is to deliver its nuclear payload to the egg to form the next-generation zygote. With polyandry repeatedly evolving in the animal kingdom, however, sperm competition has become widespread, with the highest known intensities occurring in fish. Yet, the molecular controls regulating spermatozoon swimming performance in these organisms are largely unknown. Here, we show that the kinematic properties of postactivated piscine spermatozoa are regulated through a conserved trafficking mechanism whereby a peroxiporin ortholog of mammalian aquaporin-8 (Aqp8bb) is inserted into the inner mitochondrial membrane to facilitate H2O2 efflux in order to maintain ATP production. In teleosts from more ancestral lineages, such as the zebrafish (Danio rerio) and the Atlantic salmon (Salmo salar), in which spermatozoa are activated in freshwater, an intracellular Ca2+ -signaling directly regulates this mechanism through monophosphorylation of the Aqp8bb N-terminus. In contrast, in more recently evolved marine teleosts, such the gilthead seabream (Sparus aurata), in which spermatozoa activation occurs in seawater, a cross-talk between Ca2+ - and oxidative stress-activated pathways generate a multiplier regulation of channel trafficking via dual N-terminal phosphorylation. These findings reveal that teleost spermatozoa evolved increasingly sophisticated detoxification pathways to maintain swimming performance under a high osmotic stress, and provide insight into molecular traits that are advantageous for postcopulatory sexual selection

    A multiplier peroxiporin signal transduction pathway powers piscine spermatozoa

    Get PDF
    The primary task of a spermatozoon is to deliver its nuclear payload to the egg to form the next-generation zygote. With polyandry repeatedly evolving in the animal kingdom, however, sperm competition has become widespread, with the highest known intensities occurring in fish. Yet, the molecular controls regulating spermatozoon swimming performance in these organisms are largely unknown. Here, we show that the kinematic properties of postactivated piscine spermatozoa are regulated through a conserved trafficking mechanism whereby a peroxiporin ortholog of mammalian aquaporin-8 (Aqp8bb) is inserted into the inner mitochondrial membrane to facilitate H2O2 efflux in order to maintain ATP production. In teleosts from more ancestral lineages, such as the zebrafish (Danio rerio) and the Atlantic salmon (Salmo salar), in which spermatozoa are activated in freshwater, an intracellular Ca2+-signaling directly regulates this mechanism through monophosphorylation of the Aqp8bb N terminus. In contrast, in more recently evolved marine teleosts, such the gilthead seabream (Sparus aurata), in which spermatozoa activation occurs in seawater, a cross-talk between Ca2+- and oxidative stress-activated pathways generate a multiplier regulation of channel trafficking via dual N-terminal phosphorylation. These findings reveal that teleost spermatozoa evolved increasingly sophisticated detoxification pathways to maintain swimming performance under a high osmotic stress, and provide insight into molecular traits that are advantageous for postcopulatory sexual selection.info:eu-repo/semantics/acceptedVersio
    corecore