53 research outputs found

    The Zebrafish Information Network: the zebrafish model organism database

    Get PDF
    The Zebrafish Information Network (ZFIN; ) is a web based community resource that implements the curation of zebrafish genetic, genomic and developmental data. ZFIN provides an integrated representation of mutants, genes, genetic markers, mapping panels, publications and community resources such as meeting announcements and contact information. Recent enhancements to ZFIN include (i) comprehensive curation of gene expression data from the literature and from directly submitted data, (ii) increased support and annotation of the genome sequence, (iii) expanded use of ontologies to support curation and query forms, (iv) curation of morpholino data from the literature, and (v) increased versatility of gene pages, with new data types, links and analysis tools

    Paediatric meningitis in the conjugate vaccine era and a novel clinical decision model to predict bacterial aetiology

    Get PDF
    Objectives The aims of this study were to assess aetiology and clinical characteristics in childhood meningitis, and develop clinical decision rules to distinguish bacterial meningitis from other similar clinical syndromes. Methods Children aged <16 years hospitalised with suspected meningitis/encephalitis were included, and prospectively recruited at 31 UK hospitals. Meningitis was defined as identification of bacteria/viruses from cerebrospinal fluid (CSF) and/or a raised CSF white blood cell count. New clinical decision rules were developed to distinguish bacterial from viral meningitis and those of alternative aetiology. Results The cohort included 3002 children (median age 2·4 months); 1101/3002 (36·7%) had meningitis, including 180 bacterial, 423 viral and 280 with no pathogen identified. Enterovirus was the most common pathogen in those aged <6 months and 10–16 years, with Neisseria meningitidis and/or Streptococcus pneumoniae commonest at age 6 months to 9 years. The Bacterial Meningitis Score had a negative predictive value of 95·3%. We developed two clinical decision rules, that could be used either before (sensitivity 82%, specificity 71%) or after lumbar puncture (sensitivity 84%, specificity 93%), to determine risk of bacterial meningitis. Conclusions Bacterial meningitis comprised 6% of children with suspected meningitis/encephalitis. Our clinical decision rules provide potential novel approaches to assist with identifying children with bacterial meningitis. Funding This study was funded by the Meningitis Research Foundation, Pfizer and the NIHR Programme Grants for Applied Research

    Mosaic structural variation in children with developmental disorders

    Get PDF
    Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2–1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case–control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e − 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e − 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypic–phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders

    Human Genome-Wide RNAi Screen for Host Factors That Modulate Intracellular Salmonella Growth

    Get PDF
    Salmonella enterica is a bacterial pathogen of humans that can proliferate within epithelial cells as well as professional phagocytes of the immune system. While much has been learned about the microbial genes that influence the infectious process through decades of intensive research, relatively little is known about the host factors that affect infection. We performed a genome-wide siRNA screen to identify host genes that Salmonella enterica serovar Typhimurium (S. typhimurium) utilizes to facilitate growth within human epithelial cells. In this screen, with siRNAs targeting every predicted gene in the human genome, we identified 252 new human-host-susceptibility factors (HSFs) for S. typhimurium. We also identified 39 genes whose silencing results in increased intracellular growth of S. typhimurium. The HSFs identified are regulated most centrally by NFκB and associate with each other through an extremely dense network of interactions that center around a group of kinases. Most genes identified were not previously appreciated as playing roles in the intracellular lifecycle of S. enterica. Numerous HSFs identified with interesting characteristics that could play plausible roles in mediating intracellular microbial growth are discussed. Importantly, this study reveals significant overlap between the host network that supports S. typhimurium growth within human epithelial cells and the one that promotes the growth of Mycobacterium tuberculosis within human macrophages. In addition to providing much new information about the molecular mechanisms underlying S. enterica-host cell interplay, all 252 HSFs identified are candidates for new anti-microbial targets for controlling S. enterica infections, and some may provide broad-spectrum anti-microbial activity

    The Monarch Initiative in 2019: an integrative data and analytic platform connecting phenotypes to genotypes across species.

    Get PDF
    In biology and biomedicine, relating phenotypic outcomes with genetic variation and environmental factors remains a challenge: patient phenotypes may not match known diseases, candidate variants may be in genes that haven\u27t been characterized, research organisms may not recapitulate human or veterinary diseases, environmental factors affecting disease outcomes are unknown or undocumented, and many resources must be queried to find potentially significant phenotypic associations. The Monarch Initiative (https://monarchinitiative.org) integrates information on genes, variants, genotypes, phenotypes and diseases in a variety of species, and allows powerful ontology-based search. We develop many widely adopted ontologies that together enable sophisticated computational analysis, mechanistic discovery and diagnostics of Mendelian diseases. Our algorithms and tools are widely used to identify animal models of human disease through phenotypic similarity, for differential diagnostics and to facilitate translational research. Launched in 2015, Monarch has grown with regards to data (new organisms, more sources, better modeling); new API and standards; ontologies (new Mondo unified disease ontology, improvements to ontologies such as HPO and uPheno); user interface (a redesigned website); and community development. Monarch data, algorithms and tools are being used and extended by resources such as GA4GH and NCATS Translator, among others, to aid mechanistic discovery and diagnostics

    Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources.

    Get PDF
    The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO\u27s interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes

    Data from: The trouble with triplets in biodiversity informatics: a data-driven case against current identifier practices

    No full text
    The biodiversity informatics community has discussed aspirations and approaches for assigning globally unique identifiers (GUIDs) to biocollections for nearly a decade. During that time, and despite misgivings, the de facto standard identifier has become the “Darwin Core Triplet”, which is a concatenation of values for institution code, collection code, and catalog number associated with biocollections material. Our aim is not to rehash the challenging discussions regarding which GUID system in theory best supports the biodiversity informatics use case of discovering and linking digital data across the Internet, but how well we can link those data together at this moment, utilizing the current identifier schemes that have already been deployed. We gathered Darwin Core Triplets from a subset of VertNet records, along with vertebrate records from GenBank and the Barcode of Life Data System, in order to determine how Darwin Core Triplets are deployed “in the wild”. We asked if those triplets follow the recommended structure and whether they provide an easy and unambiguous means to track from specimen records to genetic sequence records. We show that Darwin Core Triplets are often riddled with semantic and syntactic errors when deployed and curated in practice, despite specifications about how to construct them. Our results strongly suggest that Darwin Core Triplets that have not been carefully curated are not currently serving a useful role for relinking data. We briefly consider needed next steps to overcome current limitations

    The trouble with triplets in biodiversity informatics: a data-driven case against current identifier practices.

    No full text
    The biodiversity informatics community has discussed aspirations and approaches for assigning globally unique identifiers (GUIDs) to biocollections for nearly a decade. During that time, and despite misgivings, the de facto standard identifier has become the "Darwin Core Triplet", which is a concatenation of values for institution code, collection code, and catalog number associated with biocollections material. Our aim is not to rehash the challenging discussions regarding which GUID system in theory best supports the biodiversity informatics use case of discovering and linking digital data across the Internet, but how well we can link those data together at this moment, utilizing the current identifier schemes that have already been deployed. We gathered Darwin Core Triplets from a subset of VertNet records, along with vertebrate records from GenBank and the Barcode of Life Data System, in order to determine how Darwin Core Triplets are deployed "in the wild". We asked if those triplets follow the recommended structure and whether they provide an easy and unambiguous means to track from specimen records to genetic sequence records. We show that Darwin Core Triplets are often riddled with semantic and syntactic errors when deployed and curated in practice, despite specifications about how to construct them. Our results strongly suggest that Darwin Core Triplets that have not been carefully curated are not currently serving a useful role for relinking data. We briefly consider needed next steps to overcome current limitations
    corecore