51 research outputs found

    Estrogen and progesterone induce persistent increases in p53-dependent apoptosis and suppress mammary tumors in BALB/c-Trp53+/- mice

    Get PDF
    Introduction Treatment with estrogen and progesterone (E+P) mimics the protective effect of parity on mammary tumors in rodents and depends upon the activity of p53. The following experiments tested whether exogenous E+P primes p53 to be more responsive to DNA damage and whether these pathways confer resistance to mammary tumors in a mouse model of Li-Fraumeni syndrome. Methods Mice that differ in p53 status (Trp53+/+, Trp53+/-, Trp53-/-) were treated with E+P for 14 days and then were tested for p53-dependent responses to ionizing radiation. Responses were also examined in parous and age-matched virgins. The effects of hormonal exposures on tumor incidence were examined in BALB/c-Trp53+/- mammary tissues. Results Nuclear accumulation of p53 and apoptotic responses were increased similarly in the mammary epithelium from E+P-treated and parous mice compared with placebo and age-matched virgins. This effect was sustained for at least 7 weeks after E+P treatment and did not depend on the continued presence of ovarian hormones. Hormone stimulation also enhanced apoptotic responses to ionizing radiation in BALB/c-Trp53+/- mice but these responses were intermediate compared with Trp53+/+ and Trp-/- tissues, indicating haploinsufficiency. The appearance of spontaneous mammary tumors was delayed by parity in BALB/c-Trp53+/- mice. The majority of tumors lacked estrogen receptor (ER), but ER+ tumors were observed in both nulliparous and parous mice. However, apoptotic responses to ionizing radiation and tumor incidence did not differ among outgrowths of epithelial transplants from E+P-treated donors and nulliparous donors

    Sequence Variations of Latent Membrane Protein 2A in Epstein-Barr Virus-Associated Gastric Carcinomas from Guangzhou, Southern China

    Get PDF
    Latent membrane protein 2A (LMP2A), expressed in most Epstein-Barr virus (EBV)-associated malignancies, has been demonstrated to be responsible for the maintenance of latent infection and epithelial cell transformation. Besides, it could also act as the target for a CTL-based therapy for EBV-associated malignancies. In the present study, sequence variations of LMP2A in EBV-associated gastric carcinoma (EBVaGC) and healthy EBV carriers from Guangzhou, southern China, where nasopharyngeal carcinoma (NPC) is endemic, were investigated. Widespread sequence variations in the LMP2A gene were found, with no sequence identical to the B95.8 prototype. No consistent mutation was detected in all isolates. The immunoreceptor tyrosine-based activation motif (ITAM) and PY motifs in the amino terminus of LMP2A were strictly conserved, suggesting their important roles in virus infection; while 8 of the 17 identified CTL epitopes in the transmembrane region of LMP2A were affected by at least one point mutation, which may implicate that the effect of LMP2A polymorphisms should be considered when LMP2A-targeted immunotherapy is conducted. The polymorphisms of LMP2A in EBVaGC in gastric remnant carcinoma (GRC) were for the first time investigated in the world. The LMP2A sequence variations in EBVaGC in GRC were somewhat different from those in EBVaGC in conventional gastric carcinoma. The sequence variations of LMP2A in EBVaGC were similar to those in throat washing of healthy EBV carriers, indicating that these variations are due to geographic-associated polymorphisms rather than EBVaGC-associated mutations. This, to our best knowledge, is the first detailed investigation of LMP2A polymorphisms in EBVaGC in Guangzhou, southern China, where NPC is endemic

    GA4GH: International policies and standards for data sharing across genomic research and healthcare.

    Get PDF
    The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits

    Brechemin Piano Series November 13, 2014

    No full text
    Concert ProgramBrechemin Piano Series November 13, 201

    Brechemin Piano Series February 12, 2015

    No full text
    Concert ProgramBrechemin Piano Series February 12, 201
    • …
    corecore