7 research outputs found

    Constraints on Common Envelope Magnetic Fields from Observations of Jets in Planetary Nebulae

    Full text link
    The common envelope (CE) interaction describes the swallowing of a nearby companion by a growing, evolving star. CEs that take place during the asymptotic giant branch phase of the primary and may lead to the formation of a planetary nebula (PN) with a post-CE close binary in the middle. We have used published observations of masses and kinematics of jets in four post-CE PN to infer physical characteristics of the CE interaction. In three of the four systems studied, Abell 63, ETHOS 1 and the Necklace PN, the kinematics indicate that the jets were launched a few thousand years before the CE and we favour a scenario where this happened before Roche lobe overflow, although better models of wind accretion and wind Roche lobe overflow are needed. The magnetic fields inferred to launch pre-CE jets are of the order of a few Gauss. In the fourth case, NGC 6778, the kinematics indicate that the jets were launched about 3000 years after the CE interaction. Magnetic fields of the order of a few hundreds to a few thousands Gauss are inferred in this case, approximately in line with predictions of post-CE magnetic fields. However, we remark that in the case of this system, it is impossible to find a reasonable scenario for the formation of the two jet pairs observed: the small orbital separation would preclude the formation of even one accretion disk able to supply the necessary accretion rate to cause the observed jets.Comment: 9 pages, accepted by MNRAS, Key words: Magnetic Fields, ISM: Jets and Outflows, Planetary Nebulae: Individual: Necklace, Planetary Nebulae: Individual: Abell 63, Planetary Nebulae: Individual: ETHOS 1, Planetary Nebulae: Individual: NGC 677

    aragilar/h5preserve: v0.3.1

    No full text
    Fix bugs related to additional registries, and add tests for the

    The Southern-sky MWA Rapid Two-metre (SMART) pulsar survey - II. : survey status, pulsar census, and first pulsar discoveries

    No full text
    In Paper I, we presented an overview of the Southern-sky MWA Rapid Two-metre (SMART) survey, including the survey design and search pipeline. While the combination of MWA's large field-of-view and the voltage capture system brings a survey speed of, the progression of the survey relies on the availability of compact configuration of the Phase II array. Over the past few years, by taking advantage of multiple windows of opportunity when the compact configuration was available, we have advanced the survey to 75% of the planned sky coverage. To date, about 10% of the data collected thus far have been processed for a first-pass search, where 10 min of observation is processed for dispersion measures out to 250, to realise a shallow survey that is largely sensitive to long-period pulsars. The ongoing analysis has led to two new pulsar discoveries, as well as an independent discovery and a rediscovery of a previously incorrectly characterised pulsar, all from of the data for which candidate scrutiny is completed. In this sequel to Paper I, we describe the strategies for further detailed follow-up including improved sky localisation and convergence to timing solution, and illustrate them using example pulsar discoveries. The processing has also led to re-detection of 120 pulsars in the SMART observing band, bringing the total number of pulsars detected to date with the MWA to 180, and these are used to assess the search sensitivity of current processing pipelines. The planned second-pass (deep survey) processing is expected to yield a three-fold increase in sensitivity for long-period pulsars, and a substantial improvement to millisecond pulsars by adopting optimal de-dispersion plans. The SMART survey will complement the highly successful Parkes High Time Resolution Universe survey at 1.2-1.5 GHz, and inform future large survey efforts such as those planned with the low-frequency Square Kilometre Array (SKA-Low)

    The Southern-sky MWA Rapid Two-metre (SMART) pulsar survey - I. : survey design and processing pipeline

    No full text
    We present an overview of the Southern-sky MWA Rapid Two-metre (SMART) pulsar survey that exploits the Murchison Widefield Array's large field of view and voltage-capture system to survey the sky south of 30 in declination for pulsars and fast transients in the 140-170 MHz band. The survey is enabled by the advent of the Phase II MWA's compact configuration, which offers an enormous efficiency in beam-forming and processing costs, thereby making an all-sky survey of this magnitude tractable with the MWA. Even with the long dwell times employed for the survey (4800 s), data collection can be completed in <![CDATA[ $100 h of telescope time, while still retaining the ability to reach a limiting sensitivity of 2-3 mJy (at 150 MHz, near zenith), which is effectively 3-5 times deeper than the previous-generation low-frequency southern-sky pulsar survey, completed in the 1990s. Each observation is processed to generate 5000-8000 tied-array beams that tessellate the full field of view (at 155 MHz), which are then processed to search for pulsars. The voltage-capture recording of the survey also allows a multitude of post hoc processing options including the reprocessing of data for higher time resolution and even exploring image-based techniques for pulsar candidate identification. Due to the substantial computational cost in pulsar searches at low frequencies, the survey data processing is undertaken in multiple passes: in the first pass, a shallow survey is performed, where 10 min of each observation is processed, reaching about one-third of the full-search sensitivity. Here we present the system overview including details of ongoing processing and initial results. Further details including first pulsar discoveries and a census of low-frequency detections are presented in a companion paper. Future plans include deeper searches to reach the full sensitivity and acceleration searches to target binary and millisecond pulsars. Our simulation analysis forecasts 300 new pulsars upon the completion of full processing. The SMART survey will also generate a complete digital record of the low-frequency sky, which will serve as a valuable reference for future pulsar searches planned with the low-frequency Square Kilometre Array

    The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package*

    Get PDF
    The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we summarize key features in the core package as of the recent major release, version 5.0, and provide major updates on the Project. We then discuss supporting a broader ecosystem of interoperable packages, including connections with several astronomical observatories and missions. We also revisit the future outlook of the Astropy Project and the current status of Learn Astropy. We conclude by raising and discussing the current and future challenges facing the Project
    corecore