9 research outputs found

    Generation of novel Id2 and E2-2, E2A and HEB antibodies reveals novel Id2 binding partners and species-specific expression of E-proteins in NK cells

    No full text
    NK cells are cytotoxic lymphocytes with a key role in limiting tumour metastases. In mice, the NK cell lineage continually expresses high levels of the Inhibitor of DNA-binding 2 (Id2) protein and loss of Id2 is incongruous with their survival due to aberrant E-protein target gene activity. Using novel Id2 and E-protein antibodies that detect both mouse and human proteins, we have extensively characterised Id2 and E-protein expression in murine and human NK cells. We detected clear expression of E2 A and HEB, and to a lesser extent E2-2 in murine NK cells. In contrast HEB appears to be the major E-protein expressed in human NK cells, with minor E2-2 expression and surprisingly, no E2 A detected in primary NK cells nor human NK cell lines. These novel antibodies are also functional in immunofluorescence and immunoprecipitation. Mass spectrometry analysis of Id2 immuno-precipitated from murine NK cells revealed a number of novel associated proteins including several members of the SWI/SNF-related matrix-associated actin-dependent regulator chromatin (SMARC) and Mediator complex (MED) families. Taken together, these data highlight the utility of novel Id2 and E-protein antibodies and caution against mouse models for understanding Id2/E-protein biology in NK cells given their clearly disparate expression patternbetween species

    Logging alters tropical forest structure, while conversion reduces biodiversity and functioning

    No full text
    The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present the most extensive ecosystem analysis to date of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological ‘levels’: 1) structure and environment, 2) species traits, 3) biodiversity, and 4) ecosystem functions. Responses were highly heterogeneous. Variables that were directly impacted by the physical processes of timber extraction were sensitive to even moderate amounts of logging, whereas biodiversity and ecosystem functions proved resilient to logging in many cases, but were more affected by conversion to oil palm plantation.One-Sentence Summary Logging tropical forest mostly impacts structure while biodiversity and functions are more vulnerable to habitat conversio

    Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease

    No full text
    RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term 'cleavage-resistant RIPK1-induced autoinflammatory syndrome'. To define the mechanism for this disease, we generated a cleavage-resistant Ripk1(D325A) mutant mouse strain. Whereas Ripk1(-/-) mice died postnatally from systemic inflammation, Ripk1(D325A/D325A) mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1(D325A/D325A) embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1(D325A/D325A) and Ripk1(D325A/+) cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1(D325A/+) mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life
    corecore