43 research outputs found

    Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle

    Get PDF
    The recent detection of heterotrophic nitrogen (N2) fixation in deep waters of the southern Californian and Peruvian OMZ questions our current understanding of marine N2 fixation as a process confined to oligotrophic surface waters of the oceans. In experiments with Crocosphaera watsonii WH8501, a marine unicellular diazotrophic (N2 fixing) cyanobacterium, we demonstrated that the presence of high nitrate concentrations (up to 800 ÎŒM) had no inhibitory effect on growth and N2 fixation over a period of 2 weeks. In contrast, the environmental oxygen concentration significantly influenced rates of N2 fixation and respiration, as well as carbon and nitrogen cellular content of C. watsonii over a 24-h period. Cells grown under lowered oxygen atmosphere (5%) had a higher nitrogenase activity and respired less carbon during the dark cycle than under normal oxygen atmosphere (20%). Respiratory oxygen drawdown during the dark period could be fully explained (104%) by energetic needs due to basal metabolism and N2 fixation at low oxygen, while at normal oxygen these two processes could only account for 40% of the measured respiration rate. Our results revealed that under normal oxygen concentration most of the energetic costs during N2 fixation (∌60%) are not derived from the process of N2 fixation per se but rather from the indirect costs incurred for the removal of intracellular oxygen or by the reversal of oxidative damage (e.g., nitrogenase de novo synthesis). Theoretical calculations suggest a slight energetic advantage of N2 fixation relative to assimilatory nitrate uptake, when oxygen supply is in balance with the oxygen requirement for cellular respiration (i.e., energy generation for basal metabolism and N2 fixation). Taken together our results imply the existence of a niche for diazotrophic organisms inside oxygen minimum zones, which are predicted to further expand in the future ocean

    Dinitrogen fixation in oxygen minimum zones

    Get PDF

    Methodological Underestimation of Oceanic Nitrogen Fixation Rates

    Get PDF
    The two commonly applied methods to assess dinitrogen (N2) fixation rates are the 15N2-tracer addition and the acetylene reduction assay (ARA). Discrepancies between the two methods as well as inconsistencies between N2 fixation rates and biomass/growth rates in culture experiments have been attributed to variable excretion of recently fixed N2. Here we demonstrate that the 15N2-tracer addition method underestimates N2 fixation rates significantly when the 15N2 tracer is introduced as a gas bubble. The injected 15N2 gas bubble does not attain equilibrium with the surrounding water leading to a 15N2 concentration lower than assumed by the method used to calculate 15N2-fixation rates. The resulting magnitude of underestimation varies with the incubation time, to a lesser extent on the amount of injected gas and is sensitive to the timing of the bubble injection relative to diel N2 fixation patterns. Here, we propose and test a modified 15N2 tracer method based on the addition of 15N2-enriched seawater that provides an instantaneous, constant enrichment and allows more accurate calculation of N2 fixation rates for both field and laboratory studies. We hypothesise that application of N2 fixation measurements using this modified method will significantly reduce the apparent imbalances in the oceanic fixed-nitrogen budget

    Metabolic modelling in a dynamic evolutionary framework predicts adaptive diversification of bacteria in a long-term evolution experiment

    Get PDF
    Background: Predicting adaptive trajectories is a major goal of evolutionary biology and useful for practical applications. Systems biology has enabled the development of genome-scale metabolic models. However, analysing these models via flux balance analysis (FBA) cannot predict many evolutionary outcomes including adaptive diversification, whereby an ancestral lineage diverges to fill multiple niches. Here we combine in silico evolution with FBA and apply this modelling framework, evoFBA, to a long-term evolution experiment with Escherichia coli. Results: Simulations predicted the adaptive diversification that occurred in one experimental population and generated hypotheses about the mechanisms that promoted coexistence of the diverged lineages. We experimentally tested and, on balance, verified these mechanisms, showing that diversification involved niche construction and character displacement through differential nutrient uptake and altered metabolic regulation. Conclusion: The evoFBA framework represents a promising new way to model biochemical evolution, one that can generate testable predictions about evolutionary and ecosystem-level outcomes

    Circulation and Oxygen Distribution in the Tropical Atlantic Cruise No. 80, Leg 1; October 26 to November 23, 2009 Mindelo (Cape Verde) to Mindelo (Cape Verde)

    Get PDF
    METEOR cruise 80/1 was a contribution to the SFB 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean”. Shipboard, glider and moored observations are used to study the temporal and spatial variability of physical and biogeochemical parameters within the oxygen minimum zone (OMZ) of the tropical North Atlantic. As part of the BMBF “Nordatlantik” project, it further focuses on the equatorial current system including the Equatorial Undercurrent (EUC) and intermediate currents below. During the cruise, hydrographic station observations were performed using a CTD/O2 rosette, including water sampling for salinity, oxygen, nutrients and other biogeochemical tracers. Underway current measurements were successfully carried out with the 75 kHz ADCP borrowed from R/V POSEIDON during the first part of the cruise, and R/V METEOR’s 38 kHz ADCP during the second part. During M80/1, an intensive mooring program was carried out with 8 mooring recoveries and 8 mooring deployments. Right at the beginning of the cruise, a multidisciplinary mooring near the Cape Verde Islands was recovered and redeployed. Within the framework of SFB 754, two moorings with CTD/O2 profilers were recovered and redeployed with other instrumentation in the center and at the southern rim of the OMZ of the tropical North Atlantic. The equatorial mooring array as part of BMBF “North Atlantic” project consists of 5 current meter moorings along 23°W between 2°S and 2°N. It is aimed at quantifying the variability of the thermocline water supply toward the equatorial cold tongue which develops east of 10°W during boreal summer. Several glider missions were performed during the cruise. One glider was recovered that was deployed two months earlier. Another glider was deployed for two short term missions, near the equator for about 8 days and near 8°N for one day. This glider was equipped with a new microstructure probe in addition to standard sensors, i.e. CTD/O2, chlorophyll and turbidity

    Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports Chemolithoautotrophy

    Get PDF
    In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km2, which contained ~2.2×104 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ~440 km3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct Îł-, ÎŽ- and Δ-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ~30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further sulfate reduction and potentially stabilize the sulfidic OMZ water

    Microbial diversity arising from thermodynamic constraints

    Get PDF
    The microbial world displays an immense taxonomic diversity. This diversity is manifested also in a multitude of metabolic pathways that can utilize different substrates and produce different products. Here, we propose that these observations directly link to thermodynamic constraints that inherently arise from the metabolic basis of microbial growth. We show that thermodynamic constraints can enable coexistence of microbes that utilise the same substrate but produce different end products. We find that this thermodynamics-driven emergence of diversity is most relevant for metabolic conversions with low free energy as seen for example under anaerobic conditions, where population dynamics is governed by thermodynamic effects rather than kinetic factors such as substrate uptake rates. These findings provide a general understanding of the microbial diversity based on the first-principles of thermodynamics. As such they provide a thermodynamics-based framework for explaining the observed microbial diversity in different natural and synthetic environments

    A stable genetic polymorphism underpinning microbial syntrophy

    Get PDF
    Syntrophies are metabolic cooperations, whereby two organisms co-metabolize a substrate in an interdependent manner. Many of the observed natural syntrophic interactions are mandatory in the absence of strong electron acceptors, such that one species in the syntrophy has to assume the role of electron sink for the other. While this presents an ecological setting for syntrophy to be beneficial, the potential genetic drivers of syntrophy remain unknown to date. Here, we show that the syntrophic sulfate-reducing species Desulfovibrio vulgaris displays a stable genetic polymorphism, where only a specific genotype is able to engage in syntrophy with the hydrogenotrophic methanogen Methanococcus maripaludis. This 'syntrophic' genotype is characterized by two genetic alterations, one of which is an in-frame deletion in the gene encoding for the ion-translocating subunit cooK of the membrane-bound COO hydrogenase. We show that this genotype presents a specific physiology, in which reshaping of energy conservation in the lactate oxidation pathway enables it to produce sufficient intermediate hydrogen for sustained M. maripaludis growth and thus, syntrophy. To our knowledge, these findings provide for the first time a genetic basis for syntrophy in nature and bring us closer to the rational engineering of syntrophy in synthetic microbial communities

    Doubling of marine dinitrogen-fixation rates based on direct measurements

    Get PDF
    Biological dinitrogen fixation provides the largest input of nitrogen to the oceans, therefore exerting important control on the ocean’s nitrogen inventory and primary productivity. Nitrogen-isotope data fromocean sediments suggest that the marine-nitrogen inventory has been balanced for the past 3,000 years (ref. 4). Producing a balanced marine-nitrogenbudget based on direct measurements has proved difficult, however, with nitrogen loss exceeding the gain from dinitrogen fixation by approximately 200 TgNyr-1 (refs 5, 6). Here we present data from the Atlantic Ocean and show that the most widely used method of measuring oceanic N2-fixation rates underestimates the contribution of N2-fixing microorganisms (diazotrophs) relative to a newly developed method. Using molecular techniques to quantify the abundance of specific clades of diazotrophs in parallel with rates of 15N2 incorporation into particulate organic matter, we suggest that the difference between N2-fixation rates measured with the established method and those measured with the new method8 can be related to the composition of the diazotrophic community. Our data show that in areas dominated by Trichodesmium, the established method underestimatesN2-fixation rates by an averageof 62%. We also find that the newly developed method yields N2-fixation rates more than six times higher than those from the established method when unicellular, symbiotic cyanobacteria and c-proteobacteria dominate the diazotrophic community. On the basis of average areal rates measured over the Atlantic Ocean, we calculated basin-wide N2-fixation rates of 14+/-1TgNyr-1 and 24+/-1TgNyr-1 for the established and new methods, respectively. If our findings can be extrapolated to other ocean basins, this suggests that the global marine N2-fixation rate derived from direct measurements may increase from 103+/-8TgNyr-1 to 177+/-8TgNyr-1, and that the contribution of N2 fixers other than Trichodesmium is much more significant than was previously thought

    Patterns of Alcohol Consumption Among Individuals With Alcohol Use Disorder During the COVID-19 Pandemic and Lockdowns in Germany

    Get PDF
    Importance Alcohol consumption (AC) leads to death and disability worldwide. Ongoing discussions on potential negative effects of the COVID-19 pandemic on AC need to be informed by real-world evidence. Objective To examine whether lockdown measures are associated with AC and consumption-related temporal and psychological within-person mechanisms. Design, Setting, and Participants This quantitative, intensive, longitudinal cohort study recruited 1743 participants from 3 sites from February 20, 2020, to February 28, 2021. Data were provided before and within the second lockdown of the COVID-19 pandemic in Germany: before lockdown (October 2 to November 1, 2020); light lockdown (November 2 to December 15, 2020); and hard lockdown (December 16, 2020, to February 28, 2021). Main Outcomes and Measures Daily ratings of AC (main outcome) captured during 3 lockdown phases (main variable) and temporal (weekends and holidays) and psychological (social isolation and drinking intention) correlates. Results Of the 1743 screened participants, 189 (119 [63.0%] male; median [IQR] age, 37 [27.5-52.0] years) with at least 2 alcohol use disorder (AUD) criteria according to the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) yet without the need for medically supervised alcohol withdrawal were included. These individuals provided 14 694 smartphone ratings from October 2020 through February 2021. Multilevel modeling revealed significantly higher AC (grams of alcohol per day) on weekend days vs weekdays (ÎČ = 11.39; 95% CI, 10.00-12.77; P < .001). Alcohol consumption was above the overall average on Christmas (ÎČ = 26.82; 95% CI, 21.87-31.77; P < .001) and New Year’s Eve (ÎČ = 66.88; 95% CI, 59.22-74.54; P < .001). During the hard lockdown, perceived social isolation was significantly higher (ÎČ = 0.12; 95% CI, 0.06-0.15; P < .001), but AC was significantly lower (ÎČ = −5.45; 95% CI, −8.00 to −2.90; P = .001). Independent of lockdown, intention to drink less alcohol was associated with lower AC (ÎČ = −11.10; 95% CI, −13.63 to −8.58; P < .001). Notably, differences in AC between weekend and weekdays decreased both during the hard lockdown (ÎČ = −6.14; 95% CI, −9.96 to −2.31; P = .002) and in participants with severe AUD (ÎČ = −6.26; 95% CI, −10.18 to −2.34; P = .002). Conclusions and Relevance This 5-month cohort study found no immediate negative associations of lockdown measures with overall AC. Rather, weekend-weekday and holiday AC patterns exceeded lockdown effects. Differences in AC between weekend days and weekdays evinced that weekend drinking cycles decreased as a function of AUD severity and lockdown measures, indicating a potential mechanism of losing and regaining control. This finding suggests that temporal patterns and drinking intention constitute promising targets for prevention and intervention, even in high-risk individuals
    corecore