69 research outputs found

    Point-Coupling Models from Mesonic Hypermassive Limit and Mean-Field Approaches

    Get PDF
    In this work we show how nonlinear point-coupling models, described by a Lagrangian density that presents only terms up to fourth order in the fermion condensate (ψˉψ)(\bar{\psi}\psi), are derived from a modified meson-exchange nonlinear Walecka model. The derivation can be done through two distinct methods, namely, the hypermassive meson limit within a functional integral approach, and the mean-field approximation in which equations of state at zero temperature of the nonlinear point-coupling models are directly obtained.Comment: 18 pages. Accepted for publication in Braz. J. Phy

    Infrared behavior of interacting bosons at zero temperature

    Get PDF
    We review the infrared behavior of interacting bosons at zero temperature. After a brief discussion of the Bogoliubov approximation and the breakdown of perturbation theory due to infrared divergences, we present two approaches that are free of infrared divergences -- Popov's hydrodynamic theory and the non-perturbative renormalization group -- and allow us to obtain the exact infrared behavior of the correlation functions. We also point out the connection between the infrared behavior in the superfluid phase and the critical behavior at the superfluid--Mott-insulator transition in the Bose-Hubbard model.Comment: 8 pages, 4 figures. Proceedings of the 19th International Laser Physics Workshop, LPHYS'10 (Foz do Iguacu, Brazil, July 5-9, 2010

    Efimov physics beyond three particles

    Full text link
    Efimov physics originally refers to a system of three particles. Here we review recent theoretical progress seeking for manifestations of Efimov physics in systems composed of more than three particles. Clusters of more than three bosons are tied to each Efimov trimer, but no independent Efimov physics exists there beyond three bosons. The case of a few heavy fermions interacting with a lighter atom is also considered, where the mass ratio of the constituent particles plays a significant role. Following Efimov's study of the (2+1) system, the (3+1) system was shown to have its own critical mass ratio to become Efimovian. We show that the (4+1) system becomes Efimovian at a mass ratio which is smaller than its sub-systems thresholds, giving a pure five-body Efimov effect. The (5+1) and (6+1) systems are also discussed, and we show the absence of 6- and 7-body Efimov physics there

    Study protocol: the sleeping sound with attention-deficit/hyperactivity disorder project

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Up to 70% of children with Attention-Deficit/Hyperactivity Disorder (ADHD) experience sleep problems including difficulties initiating and maintaining sleep. Sleep problems in children with ADHD can result in poorer child functioning, impacting on school attendance, daily functioning and behaviour, as well as parental mental health and work attendance. The Sleeping Sound with ADHD trial aims to investigate the efficacy of a behavioural sleep program in treating sleep problems experienced by children with ADHD. We have demonstrated the feasibility and the acceptability of this treatment program in a pilot study.</p> <p>Methods/Design</p> <p>This randomised controlled trial (RCT) is being conducted with 198 children (aged between 5 to 12 years) with ADHD and moderate to severe sleep problems. Children are recruited from public and private paediatric practices across the state of Victoria, Australia. Upon receiving informed written consent, families are randomised to receive either the behavioural sleep intervention or usual care. The intervention consists of two individual, face-to-face consultations and a follow-up phone call with a trained clinician (trainee consultant paediatrician or psychologist), focusing on the assessment and management of child sleep problems. The primary outcome is parent- and teacher-reported ADHD symptoms (ADHD Rating Scale IV). Secondary outcomes are child sleep (actigraphy and parent report), behaviour, daily functioning, school attendance and working memory, as well as parent mental health and work attendance. We are also assessing the impact of children's psychiatric comorbidity (measured using a structured diagnostic interview) on treatment outcome.</p> <p>Discussion</p> <p>To our knowledge, this is the first RCT of a behavioural intervention aiming to treat sleep problems in children with ADHD. If effective, this program will provide a feasible non-pharmacological and acceptable intervention improving child sleep and ADHD symptoms in this patient group.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN68819261.</p> <p> ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN68819261">ISRCTN68819261</a></p

    Involvement of cell surface TG2 in the aggregation of K562 cells triggered by gluten

    Get PDF
    Gluten-induced aggregation of K562 cells represents an in vitro model reproducing the early steps occurring in the small bowel of celiac patients exposed to gliadin. Despite the clear involvement of TG2 in the activation of the antigen-presenting cells, it is not yet clear in which compartment it occurs. Herein we study the calcium-dependent aggregation of these cells, using either cell-permeable or cell-impermeable TG2 inhibitors. Gluten induces efficient aggregation when calcium is absent in the extracellular environment, while TG2 inhibitors do not restore the full aggregating potential of gluten in the presence of calcium. These findings suggest that TG2 activity is not essential in the cellular aggregation mechanism. We demonstrate that gluten contacts the cells and provokes their aggregation through a mechanism involving the A-gliadin peptide 31-43. This peptide also activates the cell surface associated extracellular TG2 in the absence of calcium. Using a bioinformatics approach, we identify the possible docking sites of this peptide on the open and closed TG2 structures. Peptide docks with the closed TG2 structure near to the GTP/GDP site, by establishing molecular interactions with the same amino acids involved in stabilization of GTP binding. We suggest that it may occur through the displacement of GTP, switching the TG2 structure from the closed to the active open conformation. Furthermore, docking analysis shows peptide binding with the β-sandwich domain of the closed TG2 structure, suggesting that this region could be responsible for the different aggregating effects of gluten shown in the presence or absence of calcium. We deduce from these data a possible mechanism of action by which gluten makes contact with the cell surface, which could have possible implications in the celiac disease onset

    Clinical practice: Coeliac disease

    Get PDF
    Coeliac disease (CD) is an immune-mediated systemic condition elicited by gluten and related prolamines in genetically predisposed individuals and characterised by gluten-induced symptoms and signs, specific antibodies, a specific human leukocyte antigen (HLA) type and enteropathy. The risk of coeliac disease is increased in first-degree relatives, certain syndromes including Down syndrome and autoimmune disorders. It is thought to occur in 1 in 100–200 individuals, but still only one in four cases is diagnosed. Small-bowel biopsy is no longer deemed necessary in a subgroup of patients, i.e. when all of the following are present: typical symptoms or signs, high titres of and transglutaminase antibodies, endomysial antibodies, and HLA-type DQ2 or DQ8. In all other cases, small-bowel biopsy remains mandatory for a correct diagnosis. Therapy consists of a strictly gluten-free diet. This should result in complete disappearance of symptoms and of serological markers. Adequate follow-up is considered essential. Conclusion: Although small-bowel biopsy may be omitted in a minority of patients, small-bowel biopsy is essential for a correct diagnosis of CD in all other cases. Diagnostic work-up should be completed before treatment with gluten-free diet instituted

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore