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Abstract In this work, we show how nonlinear point-
coupling models, described by a Lagrangian density
containing only terms up to fourth order in the fermion
condensate (), are derived from a modified meson-
exchange nonlinear Walecka model. We present two
methods of derivation, namely the hypermassive meson
limit within a functional integral approach and the
mean-field approximation, in which equations of state
at zero temperature of the nonlinear point-coupling
models are directly obtained.
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1 Introduction

The point-coupling interaction problem was first ad-
dressed in the early thirties by L. H. Thomas [1] while
investigating the range of the two-nucleon force. As
a side remark, he observed that when the range of
the two-body force vanishes at fixed two-body bind-
ing energy, the binding energy of the quantum three-
body state goes to minus infinity. Decades later, a new,
apparently unrelated three-body effect was proposed
by Efimov [2]. When a quantum two-body system
has a zero-energy bound state, then the three-body
system will have an infinite number of bound states
with an accumulation point at the common two and
three-body threshold. Both the Efimov and the Thomas
effects are universal, since the associated three-body
wave functions have long tails in the classically for-
bidden region outside the range of the potential. In a
unified momentum space description, based on ideas
of Amado and Noble [3], it has been claimed that
these two apparently different effects are related to the
same singular structure of the kernel of the Faddeev
equation [4]. In appropriate units, on the other hand,
the presence of one of these effects implies the other
[4, 5]. The Thomas-Efimov effect explains very well
some few-body correlations [6] and is conjectured to be
behind the Coester band [7] for different nuclear matter
models [8].

Since relativistic hadronic point-coupling models,
which have been used in the description of infinite
nuclear matter, as well as of finite nuclei [9], can be
viewed as a connection between the well-established
finite-range relativistic models and the Skyrme mod-
els [9], a better understanding of their structure is of
interest, given that an important theoretical challenge
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is to construct a universal effective nuclear density
functional [10].

In this work, we deal with a specific nonlinear
point-coupling model (NLPC) described by a fermionic
Lagrangian density with interaction terms in third and
fourth powers of the scalar density operator, which we
have used in ref. [11] in a comparative study with the
standard nonlinear Walecka model(s), and in ref. [12],
in which we took its nonrelativistic limit to obtain a
generalized Skyrme energy density functional.

We focus on the derivation of the NLPC model
from finite-range models in two different ways. First,
we present the infinitely massive meson limit within
the formal point of view of the integral functional
approach. This method clearly shows the equivalence
of the usual Walecka model to the linear point-coupling
one. By contrast, nonlinear Walecka (NLW) models
are formally inequivalent to NLPC ones. We therefore
pose the question of how NLPC models can be de-
rived if one insists on obtaining them from a meson-
exchange. To answer this question, we construct a
modified nonlinear Walecka (MNLW) model in which
the limit of infinite meson masses leads exactly to the
Lagrangian density of the NLPC model. This MNLW
model includes third and fourth powers of the scalar
meson field, along with lower powers of the fields
coupled to the fermionic scalar density operator. Pre-
liminary results on this hypermassive meson limit have
been presented in ref. [13].

The traditional mean-field approximation, per-
formed with a few physical requirements, is an alter-
native way to construct the NLPC models from the
MNLW ones. In this case we show that the equations
of state (EOS) of the MNLW models, relating energy,
density, and pressure, are exactly the same as the NLPC
ones.

The following diagram summarizes the study of the
NLW, MNLW, and NLPC models.

| + other terms I
NLW MNLW
N
AN
N
N
S hypermassive limit | mean-field
~
. ~
numerical ~
=~ ~
N
NLPC

The numerical equivalences between NLW and
NLPC models have been analyzed in ref. [11], and
the different connections among MNLW and NLPC
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models will be analytically studied in this work, which
extends the following aspects of our previous study:

e We use the hypermassive meson limit in the func-
tional integral model to derive the point-coupling
models from the modified NLW models, rigorously
and in detail. This approach shows how the lin-
ear PC models can be obtained from the Walecka
one(s), and in the same way, how the MNLW
model(s) generates the NLPC one(s).

e We also use the mean-field approach in the no-sea
approximation to construct the equations of state
of infinite nuclear matter for the MNLW model. In
this approach, we show that these EOS are exactly
the same as those for the NLPC model.

Our paper is organized as follows. In Section 2, by
using a functional integral formalism, we derive the
linear point-coupling model from the Walecka one. The
same study is extended to obtain the NLPC models
from the MNLW ones. In Section 3, we explicitly derive
the equations of state of the MNLW model. Finally, the
main conclusions are summarized.

2 Hypermassive Meson Limit

2.1 Linear Point-coupling Model from the Walecka
One

We start with the Walecka model Lagrangian density
given by [14]:

_ 1 1
Lw = (iy" 3 — MY + 50" 90,9 — mi¢?

1 1 - n
—ZFMVF;LV'Fim%/V;LVH_gSw(pw _ng/f‘yHVl’»w
1)

where F*V =9 VY — 9" Vi,

In this Lagrangian, v, ¢, and V* are the nucleon,
scalar, and vector fields, respectively and M, m;,, and
m, refer to the bare nucleon and the mesonic o and w
masses, respectively.

The fermionic, scalar, and vector fields consti-
tute an irreducible set of generators {i, 1}, ¢,V,} of
the intrinsic local algebra of fields of the model, A.
The polynomial algebra of intrinsic fields allows for the
construction of the net of Wightman functions. From
the Wightman functions of the polynomial algebra of
intrinsic fields, the physical Hilbert space is recon-
structed, H = A |0), thus defining the physical content
of the model [15]. Under this setting, an equivalence
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between models should be understood as an assertion
on the isomorphism of their physical Hilbert spaces.
This kind of equivalence is extremely rare. It is be-
lieved to occur in the context of duality transformations
and is witnessed in the context of two-dimensional
field theory as in the bosonization phenomenon [16].
In establishing this isomorphism, the operator and
functional integral methods are usually complementary
tools [17].

Our concern here, however, is with much less strin-
gent equivalences. We shall, first, derive an equiva-
lence between the usual Walecka model to the linear
point-coupling model with terms of second order in the
fermionic density and vector current (fourth order in
the fermion fields). This is not an equivalence between
the Hilbert spaces but of the physical content between
the models amenable to mean-field procedures. The
mean-field procedures start from discarding the kinetic
terms for the scalar and vector fields, which is related
to the infinite limit of the masses of the bosons. The
derivation of this equivalence will be provided here
using functional integral methods. In this section, we
discuss this treatment in detail, in order to explain ideas
with a view to applying them to interaction Lagrangian
models, which contain higher powers of the mesonic
fields. This will help us distinguish valid procedures
from ones that cannot be applied to this more complex
models.

We start out by constructing the generating function-
als within the functional integral formalism from which
the correlation functions will be obtained. We will then
use this formalism to connect the Walecka model to the
linear point-coupling model.

For the Walecka model, the generating functional is
given by the equality:

WL, Ayn. i) = N/[Dl/f] [DY][DVM[Dg] s (2)

with

N~ = /d4x Cis, 3)
S = /d4x Lw and (4)

Ss.= [ & [Lw+ A0V 0+ T09

+ 1Y () + 1Y (0] ®)

where A, (x), J(x), n(x), and 7(x) are the sources for
the vectorial (V*), scalar (¢), and spinorial (¢ and
yr) fields, respectively. Sy and S are the actions with
and without the source terms. Here, we define V'*
myVH*, ¢ =msp, Gy = gs/my, G/V =gv/my, A

"

A,/my, and J' = J/m,. With these definitions we can
write

Lw=Ly+ %mga“qs’am’ — ﬁF””F;W

=Ly +U(¢, V") (6)
where
F* ="V’ —39"V'* and (7)

B} 1 1 B}
W= (iy"d, — M)y — E¢>’2 + 5V,; VIt — Gy
—Gyuy" V. ®)

Now, the generating functional Eq. (2) may be writ-
ten in the following form:

W[J AL 7] =N f (Dy1[D7] 1DV [Dg]

X exp {i [/ d*x U (¢/, V") + SS“
)

where
= f d'x [Liy + AL OV (0 + T ()¢ ()

+1OY () + (0P )] (10)

In order to make contact with mean-field methods, we
consider the limit in which the mesonic masses become
very large, so that terms involving 1/m? and 1/mj,
can be treated perturbatively in a generating functional
expansion. It is in this perspective that we identify
the fields in U(¢’, V'*) with the respective functional
derivatives,

1

2
2m?

2
(g
2m? 3J
2
1 § 5
- 2 3" / — 0" /
4my, SAM SA

5 8
—U(=>, 11
(51/’5A;L>’ (1)

which allows us to write Eq. (9) as follows:

U@.ve =

U / l v '/
09’ — o FF,
4

W[J, AL, 0] = Nei[fd4x U@ﬁﬂ
x / [Dy1[DF][DV™][ D] .
(12)
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Up to now, we have not changed the physical content
of the Walecka model but merely rewritten the gener-
ating functional in a form suited to a nonstandard ex-
pansion. We consider in the following the zeroth-order
term of the expansion of the generating functional with
the approximation

[ ratxu L,,L,)}
6l|:f x (a/ 5A), ~ 1,

so that

(13)

Wy [T, Al 0. i) =Nf[Dw] [Dy][DV™*][D¢'] €5
(14)

in which the kinetic terms associated to the mesonic
fields are neglected, and W,y refers to the generating
functional associated to mean-field treatment.

We now examine the structural properties of
the model. Originally, the intrinsic algebra of fields
was generated by the irreducible set of fields S; =
{y, ¥, ¢, V*}. Now, in the zeroth-order approximation,
since the mesonic kinetic terms have been suppressed,
the equations of motion will allow us to express the
mesonic fields in terms of the fermion densities ex-
plicitly in this case. The algebra of fields has been
converted into a reducible algebra, and the irreducible
algebra of fields is now constructed from the fermionic
fields S; = {¥, ¥}, only. This seems to be a mathemat-
ical counterpart to the spirit of the mean-field treat-
ment. Of course the mesonic fields are still in play in
the dynamics of the model, since they are still coupled
to the fermionic fields, but we have lost control on
the independent degrees of freedom associated to the
mesonic fields. The physical picture associated with this
mathematical aspect will be discussed at the end of this
subsection and of Section 2.2.

We proceed to the last step of the process, expressing
the mesonic fields in terms of the fermion degrees
and expressing the dynamics solely in terms of fermion
fields. To do so in the functional integral formalism, we
decouple the mesonic fields reducing them to auxiliary
fields devoid of physical content. To decouple them,
we will proceed with a transformation of the mesonic
fields to the auxiliary ones. Before this, since we are not
interested in analyzing the mesonic correlation func-
tions, we will set J'(x) = A, (x) =0 in Eq. (10). With
this condition and the following identities,

1 - 1 - 1 -
—38° = GO == (¢ + Gw) + G (T9)
(15)
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1 1, / /T / 1, /T
SV = Gy Vi =5 (VY = Gty

1

2
1 -

—5G (i) . (16)

Eq. (10) may be rewritten as follows:
’S=/d4x [& (iy"8, — M)y — % (¢'+ Giy)’
3G GY) 4 3 (VI = Ghyy)’
~lay (1ny“1//)2+ﬁ(xw(x)+n(X)¢(X)} .

(17)

We now change variables, from ¢’ and V'* to A and
R*:

r=¢ + Gy
R = V" — Gy .

(18)
(19)

With this the generating functional, Eq. (14)
becomes

22

Win.il = N / (DA e i/ a5

x / [DRW] i/ 'x1 RV R, f [Dy1[Dy]es (20)

:Nf [Dy1[D¥] &', (21)
where
N = [1Dwi[Di]e (22)
S = /d4x |:1/_/(i)/uau — M)y + %Gf ()’
_ %G/VZ (@,m@ﬂ and (23)

_ 1 -
- /d4x [w (iy" 8y — M)y + ch (Fv)’
1 _ —_
- EG/v2 Ty y)’ + iy + nw} N 2

The Lagrangian density associated to Egs. (23)—(24) is
now simply given by

_ 1 _
Loc = (iy" 3, — M)V + 3G (y)’
1 _
—5Gy? (1)’ (25)

devoid of mesonic fields.
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The decoupling procedure is just the integration off
of the mesonic fields leading to contributions in the
Lagrangian density, Eq. (25), that are quadratic in
the fermion density and fermion vector current. In-
deed Eq. (20) expresses the auxiliary character of the
mesonic fields. Their contribution, in the zeroth-order
approximation, is resumed in the quadratic terms, and
no true quanta can be assigned to the mesons in this
approximation. We have thus rigorously derived the
equivalence between the linear point-coupling model
and the zero-order approximation to the Walecka
model. This amounts to an equivalence between the
fermion correlation functions, and Wightman functions
of the models. A reconstruction of the Hilbert space of
the zero-order Walecka and linear point-coupling mod-
els will lead to an isomorphism of their Hilbert spaces.
On the other hand, this implies a rigorous derivation
of the equivalence between the mean-field Walecka
model and the linear point-coupling one. It means that
both models will lead to the same equations of state,
as it was pointed out in [18]. From the physical point
of view, it should be said that the meson degrees of
freedom are not excited in the infinite mass limit. This is
the physical mechanism that leads to the isomorphism
of the Hilbert spaces of the mentioned models.

2.2 NLPC Model from the MNLW Ones

In the previous section, we have shown that the point-
coupling model was obtained from the Walecka one
in the limit of hypermassive mesons. To improve the
agreement with experimental data, for finite nuclei [19]
and with the bulk properties of infinite nuclear matter,
the well-known nonlinear Walecka model [20] adds
cubic and quartic scalar self-couplings to the Walecka
model:

Lniw = Lw — é¢3 - §¢4~ (26)
3 4

Indeed, there is a family of acceptable NLW models
which differ in respect to how the A and B free pa-
rameters are chosen to fit different sets of experimen-
tal nuclear data [21]. As we have pointed out before,
higher order point-coupling models involving ()3
and (¥ )* (NLPC) have also been successfully applied
to finite nuclei [9].

Still at the finite-range level, i.e., finite meson
masses, different kinds of Walecka-type models such as
variants of NLW ones [22, 23], with density-dependent
coupling constants [24], and the linear chiral model [25],
were also used in the description of nuclear frame-
works. The NLW models derived from a quark model

perspective can be found in ref. [26]. In particular,
the authors show that the Walecka model is the limit
of infinite quark mass, in which the quark dynamics
freezes.

The question we pose in this section is whether
a NLW model, Eq. (26), leads to a nonlinear point-
coupling model in the limit of infinite meson masses,
which includes cubic and quartic self-fermionic terms:

_ 1 _
Laire =V iy d, — My + G’ (Iy)’

A -

1 - B’
—5 GV ")+ T () +

+ Wy)*. 27)

The answer is negative. Indeed, reproducing the pro-
cedure of the last section with Eq. (17), instead of
Eq. (14), integrating away the vectorial field, we obtain
the following result:

Wtr_wiln, il = N / [DY1[DJ][Dg] e (28)
with

- 1 _
o= [ a5 | ira, - M) v = 3 @+ G

1 12 /7 2 A 3 B 4 1 ;2
-G — Lyt -G
+ 560 (W) —5¢" -9 3Gy

< (Py" )+ 700Y () + n(x)ll_f(x)} .
(29)

Now the functional integral for the field ¢’ can no
longer be explicitly performed, and all we can say is
that it gives rise to an unknown functional of .
With this, the identification between NLW and NLPC
fails. That is, we cannot assert the formal equivalence
between NLW and NLPC even at the restricted sense
of zero-order expansion in the kinetic terms. An ap-
proach connecting the NLW and NLPC models has
been nicely developed in ref. [27] where the authors
use an expansion in the meson propagators treating the
nonlinearity in the ¢ field by an iterative process.

In order to gain a deeper understanding on how
to obtain the NLPC model, Eq. (27), in the meson
hypermassive limit, we consider here a modification
of Lxrw that includes second and third powers of the
scalar meson field coupled to the appropriate powers of
the fermion scalar density, which allows us to decouple
the scalar meson field when the scalar mass goes to
infinity.
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We consider then the modified nonlinear
Lagrangian:
Lyvnew = Lw + L3+ Ly (30)
where
A [ rm2\? m2\°
53_——|:< ) ¢3+3<—‘> PYY
3 & s
m2 -
+3—¢ (yy) | and (31)

mAN\® Lo omE s
+6 (—) o> (vy)” + 4g—¢ ()" |(32)
The generating functional for this Lagrangian is
given by Eq. (2) with Ly substituted for LyNLw.
Again, the definitions for V', ¢’, G}, GV, A, and J,
turn Eq. (30) into the following:

LvNLwW = &(i}/"au — M)y + Zrlnf 30,9 — %d)/z
_ e sy ey
4m%/ nv 2R s
—GyUy* Vi + L5+ Ly (33)
= Lynew + L5+ La+ U (', V) (34)

where
/ ERN 1 72 1 ! Y
LMNLWZw(ly BM — M)l[/ — 5(17 + EVMV
~Gyd'y — Gyyy"V,yr, (35)
’_ A/ 1 /3 3 .7 3 !’ (.7 2
L3= 3 [Gg3¢ +G;2¢ W¢+Gg¢ (Wﬁ)} ;

(36)

with U(¢’, V'*) given by Eq. (11). Therefore, the gen-
erating functional can be rewritten:

WII' Ajn. il = N [1DWI[DF]IDV*1[DY] x

x ¢ I/ dx U@ VI)+Sy] (38)
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where

Ss= / d*x[Lyniw + L5+ L) + Al () V™ (x)
+ J' ()" (x) + 1Y (x) + n(0)Y ()] . (39)

Again, U(¢', V'*) will be treated perturbatively in the
generating functional. The zeroth-order approxima-
tion, Eq. (13), leads to

W/, ;,n,ﬁ]=N/[D¢][D¢7][DV/“][D¢’] e'Ss . (40)

As previously, we will discard the control on
the mesonic correlation functions by taking J'(x) =
A;L(x') = 0in Eq. (39).. Now, along w'1t.h Egs. (15)—(16),
we will use the following set of identities:

Al 1 . 3 - 3,
-5 [G—;3¢3+ G§2¢2w+5§¢ (ww)z}
A’ ’ ’T 3 A 3
Bl 1 ., 4 .- 6 - 4 - 3
- [G?¢4+G_;3¢3W+G_;2¢’2("””)2+5;¢ (w)*}
B/ , L - 4 B/ _ 4
=g WO+ () (42)

which allows us to rewrite Eq. (39) as follows:
" T e 1 / /T
Sy = fd“x |:1ﬁ(ly”8M - My -3 (¢'+ Gyv)

1 - 1 -
+5GE () + 5 (V= Gyuyty)

1 1207w \2 A ’ A
3G - S 0 G

A/ T 3 B/ / /.7 4
+3 W) - ga @+ oY)

/

+ (1/71/f)4+ﬁ(X)1ﬁ(X)+n(X)l/_f(X)} - (43)

If we once again define the change of fields leading
to the auxiliary fields,

A=¢ + Gy (44)
RY = V" — Gyiryty, (45)
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we will have the following forms for the mesonic field
integrals in Eq. (38):

[ po7ex {—i [

1 _
x [5 (@' +Gy) +

/

3G73

N

(@' + Gy)’

/

+

o ain

N

_ /[D/\] e—ifd4x [%AM}(‘;‘;’; /\3+4£;4/\4} (46)

and
f (DY el d% 3V =Gy i?
- /[DR“] el /&' SRRy (47)

The identities and translations above allow us to rewrite
Eq. (40) as follows:

Win. il = A / [Dy1[DF] % (48)
where
x'= [1Dn[Di] . (49)

S“:/d“x [&(iy“au - My + %GQZ (W)2

1 - A - B -
—EG/VZ(WW)%?(w)ﬁz(w)ﬂ

. 1 7
g:/d4x [w(iyﬂau - My + EGQZ (1/“/[)2

1 - A - B -
=GV I ) + 5 () + o ()’

+ 7)Y (x) + TI(X)I/_/(X)] . (51)

The Lagrangian density in Egs. (50)-(51) describes
the fermionic nonlinear point-coupling model we
wanted. We have seen that the generating Lagrangian
to obtain the NLPC model through the mesonic hyper-
massive limit is Lyinpw, given by Eq. (30), and not Lnpw
as it could naively be expected.

Let us consider the structural properties of the
model. We are not asserting here an equivalence of
NLPC and MNLW models. The Hilbert spaces of

the two models are not isomorphic. But the zeroth-
order expansion of the MNLW model has been exactly
mapped onto the NLPC models. Once again from the
viewpoint of structural analysis, the irreducible algebra
of fields of MNLW composed of the polynomial algebra
of the fermion and meson fields becomes reducible
in the zeroth-order approximation. The mesonic fields
turn out to be functions of the fermion fields, and the
irreducible algebra is composed solely of the fermion
field algebra. In the language of functional integrals,
this is implemented by the decoupling of the aux-
iliary fields A and R*. The equations of motion of
the auxiliary fields bring about the functional relation
between the original mesonic fields and the fermion
bilinears. Contrary to the linear case treated in the
preceding section, now the equations of motion do
not demand A =0 and R* = 0. The equations for the
auxiliary fields includes, in principle, other roots be-
sides the trivial ones. Actually, as we will discuss in
the next section, the equations of state of the MNLW
model in the mean-field approximation depend on the
mean value of the auxiliary field A and differ from
those of the NLPC model only by the terms contain-
ing this field. However, the physical requirement of
vanishing pressure at zero Fermi momentum is sat-
isfied only by the trivial solution for the auxiliary
field A.

Consider now the renormalization properties of the
models. The infinite mass expansion effectively changes
the power-counting dimensions of the mesonic fields.
Since their kinetic terms are discarded, there appear
no inverse powers of the momenta in their propagators
in the ultraviolet region. The result is that the Lnppc
models are nonrenormalizable, while the Lxpw are
(power-counting) renormalizable. The physical reason
for this change deserves emphasis: our approximation
freezes the meson degrees of freedom that are neces-
sary to render the Walecka model (power-counting)
renormalizable.

3 Mean-field Approximation

We now follow an alternative procedure to derive the
NLPC model from the meson-exchange MNLW one.
Here, we adopt the largely used mean-field approach
(MFA), instead of the infinite meson mass limit in the
previous section. We also use the no-sea approxima-
tion, i.e., we consider only the valence Fermi states.
We will show that the EOS for the MNLW and NLPC
models are exactly the same.
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For infinite nuclear matter, the energy density
and pressure of the NLPC models are given by the
following:

1 1 2 3
€=5Gy' 0"+ G nl + A0+ Bp)]

kr 12
Y 2 (12 )
+53 /0 2 (k2 + M) dk (52)

and

1 12 2 1 12 2 2 ’ 3 3 ’ 4
P=-G — =G, p;: —=A'p; — -=B'p,
2 14 IO 2 N pA 3 'O.S 4 'OA
kr 4
y k
t—— 12’ (53)
6= Jo (k2 + M+?)

respectively, with the vector and the scalar density
defined as

vy [
) / k*dk and (54)
0

~ 2n?

kr M*
p= = / Kk, (55)
2o (K2 + M)

with kr being the Fermi momentum, y = 4 for symmet-

ric nuclear matter, and y = 2 for neutron matter. The

nucleon effective mass reads

M*=M—Gp,— Ap? — Bp. (56)
Let us now start to derive the MNLW equations

of state by first rewriting its Lagrangian, Eq. (30), as
follows:

- 1 -
Lvnew = ¥ (iy" 0, — M)y + 53”¢3u¢ - ZF“ Fu

1 _
—i—Em%,V,LV“ — gy V,

/ m? _ 4 o 4
——(—w+ww)+—%wm- (57)
Given that a field translation does not alter the physical

content of the model, we define

2
s
8s

A ¢+UY. (58)
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With this definition, the MNLW Lagrangian acquires
the following form:

o 1. 1
Lvniw = ¥ (iy" 8, — M)y — ZF”“ F,, + gmzv v, VvH

—gviy" Vit = %G;W + %G;Z ()’
/ A/ _ B/ B/ _
SRS ) - ()

/

G - -
+2_rns2 (3#}\ - aﬂl/“/,) (au)‘ - auwl//) ’ (59)

where G| = g;/mj.
In the MFA, the scalar and vector mesonic fields are
replaced by their average values:

A—> (W) = A (60)
VH (VMY = sH0V0 (61)
Still in this approximation, we use the ¥y ground-state
expectation value. We also assume the system to be

spatially uniform, so that the derivative terms of A and
¥ disappear. Therefore, Eq. (59) becomes

- 1 .
Liniw = ¥ (iy"8, — M)y + §m2vV5 — vy Voy
U og e A . A

— G4 =G il Nl

B B - 4
—— = . 62
) (62)

The independent fields of this theory may be taken
as A, ¥, ¥, and V°. From the Euler-Lagrange equa-

tions, one obtains the equations of motion for the fields:

MG+ A)+ B =0, (63)

Vo =52 Gy (64)
my,

and

[iyuau - gVVOVO
— (M=G (@) - A'(Fw)’ = B (F9)")]w=0. (65)

Now, substituting ¥y and ¥y, by their mean values,
we have that

— 8V _ &

and consequently, Eq. (65) may be rewritten as follows:
[iy“aﬂ -G, p— (M— G2 py— Al p2— B’pf)] v =0,
(67)
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where G5, =gl/m}, G2 =g}/m?, and p, = ().
The above Dirac equation suggests the definition of
the effective mass:

M* =M — G/*p,— A'p> — B'p?, (68)

a result identical to Eq. (56).
The mean-field equations of state will come from the
energy—momentum tensor:

c 1
TV = g, [WW 3 — gvy"Vo — M)y + Emzvvg

!/

1 1 5 - A
—EG;ZAZ + Eng(w)2 -0

3
o B/ B/ _
O ]
+i1ﬁ7/uavw
2A 3B’ -
g [5 GRG0

1 22 1 1242 A/ 3 B/ 4

+ iy (69)

The density energy is obtained from

g = (1)

., 24, 3B s, 1,
EG; ,Os2 + Tps + T,OS G/V )02+ EG; )»2
A B’ -
+?}\3 + IX4 +1 (1ﬁ7/0801/f) ) (70)

where we have used Eq. (66).
The quantity i(¥ydy) is found from the
dispersion  relation ko = gy Vo + (kK2 + M*H)1/? =
G\ p + (K + M*»)'/2, where ky is the fourth energy—

momentum component. This leads to
2A 3B/

1 1
5=§G/V2,02 - EG'Z,OS + =+ —

I 2.5
G\
3 4 +2 s

A B’ A 12
iy Nl | R / K+ M?) K2k, (71

The pressure is obtained from the expression

1
P=— i
3< i)
1 5 5 2A 3B 1
= JGV P = 3Gl = ) = St - G
A B’ -
—?,\3 T 4+§z(wyia,»w). (72)

By extracting i (y;9;1) from the the Dirac equation,
we can write the pressure as follows:

1, 1 2A' , 3B, 1,
P= 3Gyt =360l = T pl = Tt = 3G
A B’ kp k4
B LR LR A e — ).
3 4 672 0 (k2+ M*2)1/2

The auxiliary A field is decoupled from the fermionic
sector. Its contribution to both the pressure and to
the energy can be dropped in view of the physical
requirement that the pressure goes to zero when kr
vanishes, implying that only the trivial solution, A = 0,
of Eq. (63) should be kept. The energy density and the
pressure become

3
€=—G/2 24 = G’2 2 4 240 + > B'p}

3 3
k
Y (2 a2 e
- K>+ M K>dk 74
+27T2 0 ( + ) ( )
and
:-G/2 2—-(;/2 2—§A/p; 3B/ N
kr k4
SRR . ST (75)

67'[2 0 (k2+M*2)1/2

The above equations for the MNLW model are iden-
tical to Egs. (52) and (53) for the NLPC models, which
goes to show that the former can be also obtained
from the mean-field approximation at the level of the
EOS instead of the Lagrangian density framework,
illustrated by the hypermassive limit in Section 2.

4 Conclusion

The hypermassive meson limit of the usual NLW mod-
els fails to yield baryonic NLPC models. We have
shown that in order to obtain NLPC models, the NLW
models must be modified already at the level of the
Lagrangian density. In this work, we have derived the
point-coupling models from a modified NLW by using
the hypermassive meson limit in the functional integral
method. From this approach, we have shown how the
linear PC models can be obtained from the Walecka
ones and in the same way, how the MNLW model
generates the NLPC one. This relation between the
MNLW and NLPC is described by the equivalences of
the physical content of these models encoded in their ir-
reducible algebra of fields in the infinite meson masses
limit. In addition, from the no-sea approximation, we

@ Springer
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have also constructed the equations of state of the
MNLW model. Even in this alternative, (i.e., without
taking the hypermassive meson limit) the EOS are
identical to the NLPC EOS. The same NLPC models
are therefore obtained, whether we treat the MNLW
model from the meson hypermassive limit or directly
from the mean-field approach.
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