74 research outputs found
Normal-superconducting transition induced by high current densities in YBa2Cu3O7-d melt-textured samples and thin films: Similarities and differences
Current-voltage characteristics of top seeded melt-textured YBa2Cu3O7-d are
presented. The samples were cut out of centimetric monoliths. Films
characteristics were also measured on microbridges patterned on thin films
grown by dc sputtering. For both types of samples, a quasi-discontinuity or
quenching was observed for a current density J* several times the critical
current density Jc. Though films and bulks much differ in their magnitude of
both Jc and J*, a proposal is made as to a common intrinsic origin of the
quenching phenomenon. The unique temperature dependence observed for the ratio
J*/Jc, as well as the explanation of the pre-quenching regime in terms of a
single dissipation model lend support to our proposal.Comment: 10 pages, 10 figures, submitted to Physical Review
Effect of simulated microgravity on the virulence properties of the opportunistic bacterial pathogen Staphylococcus aureus
Extended manned space flight will result in a diminution of immune status and cause profound changes in the human bacterial microbiota, leading to increased risk of infection. Experiments conducted during short-term flight suggest that growth in microgravity leads to increases in bacterial antibiotic resistance and to cell wall changes. Growth under low-shear modelled microgravity (LSMMG) indicated that a reduced gravitational field acts as an environmental signal for expression of enhanced bacterial virulence in Gram-negative pathogens. We examined the effect of simulated microgravity on parameters of virulence in clinical isolates of Staphylococcus aureus. Three strains were grown under LSMMG in a High Aspect Ratio Vessel and compared with cells grown under normal gravity (NG) in the same vessel. There were no significant differences in the antibiotic susceptibility, growth rate or morphology of staphylococci grown under LSMMG compared to NG. LSMMG-induced reductions in synthesis of the pigment staphyloxanthin were noted. Strains secreted less protein under LSMMG and reductions in haemolysin secretion were found. Reduced expression of the major virulence determinant "-toxin in the microgravity environment was found by gene amplification. Thus, in contrast to published data on Gram-negative pathogens, simulated microgravity reduces the expression of key virulence determinants of S. aureus
Severe traumatic injury during long duration spaceflight: Light years beyond ATLS
Traumatic injury strikes unexpectedly among the healthiest members of the human population, and has been an inevitable companion of exploration throughout history. In space flight beyond the Earth's orbit, NASA considers trauma to be the highest level of concern regarding the probable incidence versus impact on mission and health. Because of limited resources, medical care will have to focus on the conditions most likely to occur, as well as those with the most significant impact on the crew and mission. Although the relative risk of disabling injuries is significantly higher than traumatic deaths on earth, either issue would have catastrophic implications during space flight. As a result this review focuses on serious life-threatening injuries during space flight as determined by a NASA consensus conference attended by experts in all aspects of injury and space flight
Defining the Conformational Features of Anchorless, Poorly Neuroinvasive Prions
Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion
Prion Seeding Activities of Mouse Scrapie Strains with Divergent PrPSc Protease Sensitivities and Amyloid Plaque Content Using RT-QuIC and eQuIC
Different transmissible spongiform encephalopathy (TSE)-associated forms of prion protein (e.g. PrPSc) can vary markedly in ultrastructure and biochemical characteristics, but each is propagated in the host. PrPSc propagation involves conversion from its normal isoform, PrPC, by a seeded or templated polymerization mechanism. Such a mechanism is also the basis of the RT-QuIC and eQuIC prion assays which use recombinant PrP (rPrPSen) as a substrate. These ultrasensitive detection assays have been developed for TSE prions of several host species and sample tissues, but not for murine models which are central to TSE pathogenesis research. Here we have adapted RT-QuIC and eQuIC to various murine prions and evaluated how seeding activity depends on glycophosphatidylinositol (GPI) anchoring and the abundance of amyloid plaques and protease-resistant PrPSc (PrPRes). Scrapie brain dilutions up to 10-8 and 10-13 were detected by RT-QuIC and eQuIC, respectively. Comparisons of scrapie-affected wild-type mice and transgenic mice expressing GPI anchorless PrP showed that, although similar concentrations of seeding activity accumulated in brain, the heavily amyloid-laden anchorless mouse tissue seeded more rapid reactions. Next we compared seeding activities in the brains of mice with similar infectivity titers, but widely divergent PrPRes levels. For this purpose we compared the 263K and 139A scrapie strains in transgenic mice expressing P101L PrPC. Although the brains of 263K-affected mice had no immunoblot-detectable PrPRes, RT-QuIC indicated that seeding activity was comparable to that associated with a high-PrPRes strain, 139A. Thus, in this comparison, RT-QuIC seeding activity correlated more closely with infectivity than with PrPRes levels. We also found that eQuIC, which incorporates a PrPSc immunoprecipitation step, detected seeding activity in plasma from wild-type and anchorless PrP transgenic mice inoculated with 22L, 79A and/or RML scrapie strains. Overall, we conclude that these new mouse-adapted prion seeding assays detect diverse types of PrPSc
The Physical Relationship between Infectivity and Prion Protein Aggregates Is Strain-Dependent
Prions are unconventional infectious agents thought to be primarily composed of PrPSc, a multimeric misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrPC). They cause fatal neurodegenerative diseases in both animals and humans. The disease phenotype is not uniform within species, and stable, self-propagating variations in PrPSc conformation could encode this ‘strain’ diversity. However, much remains to be learned about the physical relationship between the infectious agent and PrPSc aggregation state, and how this varies according to the strain. We applied a sedimentation velocity technique to a panel of natural, biologically cloned strains obtained by propagation of classical and atypical sheep scrapie and BSE infectious sources in transgenic mice expressing ovine PrP. Detergent-solubilized, infected brain homogenates were used as starting material. Solubilization conditions were optimized to separate PrPSc aggregates from PrPC. The distribution of PrPSc and infectivity in the gradient was determined by immunoblotting and mouse bioassay, respectively. As a general feature, a major proteinase K-resistant PrPSc peak was observed in the middle part of the gradient. This population approximately corresponds to multimers of 12–30 PrP molecules, if constituted of PrP only. For two strains, infectivity peaked in a markedly different region of the gradient. This most infectious component sedimented very slowly, suggesting small size oligomers and/or low density PrPSc aggregates. Extending this study to hamster prions passaged in hamster PrP transgenic mice revealed that the highly infectious, slowly sedimenting particles could be a feature of strains able to induce a rapidly lethal disease. Our findings suggest that prion infectious particles are subjected to marked strain-dependent variations, which in turn could influence the strain biological phenotype, in particular the replication dynamics
Sheep and Goat BSE Propagate More Efficiently than Cattle BSE in Human PrP Transgenic Mice
A new variant of Creutzfeldt Jacob Disease (vCJD) was identified in humans and linked to the consumption of Bovine Spongiform Encephalopathy (BSE)-infected meat products. Recycling of ruminant tissue in meat and bone meal (MBM) has been proposed as origin of the BSE epidemic. During this epidemic, sheep and goats have been exposed to BSE-contaminated MBM. It is well known that sheep can be experimentally infected with BSE and two field BSE-like cases have been reported in goats. In this work we evaluated the human susceptibility to small ruminants-passaged BSE prions by inoculating two different transgenic mouse lines expressing the methionine (Met) allele of human PrP at codon 129 (tg650 and tg340) with several sheep and goat BSE isolates and compared their transmission characteristics with those of cattle BSE. While the molecular and neuropathological transmission features were undistinguishable and similar to those obtained after transmission of vCJD in both transgenic mouse lines, sheep and goat BSE isolates showed higher transmission efficiency on serial passaging compared to cattle BSE. We found that this higher transmission efficiency was strongly influenced by the ovine PrP sequence, rather than by other host species-specific factors. Although extrapolation of results from prion transmission studies by using transgenic mice has to be done very carefully, especially when human susceptibility to prions is analyzed, our results clearly indicate that Met129 homozygous individuals might be susceptible to a sheep or goat BSE agent at a higher degree than to cattle BSE, and that these agents might transmit with molecular and neuropathological properties indistinguishable from those of vCJD. Our results suggest that the possibility of a small ruminant BSE prion as vCJD causal agent could not be ruled out, and that the risk for humans of a potential goat and/or sheep BSE agent should not be underestimated
A Simple, Versatile and Sensitive Cell-Based Assay for Prions from Various Species
Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies
Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues
Atypical/Nor98 scrapie was first identified in 1998 in Norway. It is now considered as a worldwide disease of small ruminants and currently represents a significant part of the detected transmissible spongiform encephalopathies (TSE) cases in Europe. Atypical/Nor98 scrapie cases were reported in ARR/ARR sheep, which are highly resistant to BSE and other small ruminants TSE agents. The biology and pathogenesis of the Atypical/Nor98 scrapie agent in its natural host is still poorly understood. However, based on the absence of detectable abnormal PrP in peripheral tissues of affected individuals, human and animal exposure risk to this specific TSE agent has been considered low. In this study we demonstrate that infectivity can accumulate, even if no abnormal PrP is detectable, in lymphoid tissues, nerves, and muscles from natural and/or experimental Atypical/Nor98 scrapie cases. Evidence is provided that, in comparison to other TSE agents, samples containing Atypical/Nor98 scrapie infectivity could remain PrPSc negative. This feature will impact detection of Atypical/Nor98 scrapie cases in the field, and highlights the need to review current evaluations of the disease prevalence and potential transmissibility. Finally, an estimate is made of the infectivity loads accumulating in peripheral tissues in both Atypical/Nor98 and classical scrapie cases that currently enter the food chain. The results obtained indicate that dietary exposure risk to small ruminants TSE agents may be higher than commonly believed
- …