51 research outputs found

    Protein-metabolite interactomics of carbohydrate metabolism reveal regulation of lactate dehydrogenase

    Get PDF
    Metabolic networks are interconnected and influence diverse cellular processes. The protein-metabolite interactions that mediate these networks are frequently low affinity and challenging to systematically discover. We developed mass spectrometry integrated with equilibrium dialysis for the discovery of allostery systematically (MIDAS) to identify such interactions. Analysis of 33 enzymes from human carbohydrate metabolism identified 830 protein-metabolite interactions, including known regulators, substrates, and products as well as previously unreported interactions. We functionally validated a subset of interactions, including the isoform-specific inhibition of lactate dehydrogenase by long-chain acyl-coenzyme A. Cell treatment with fatty acids caused a loss of pyruvate-lactate interconversion dependent on lactate dehydrogenase isoform expression. These protein-metabolite interactions may contribute to the dynamic, tissue-specific metabolic flexibility that enables growth and survival in an ever-changing nutrient environment

    Genetic correlation between amyotrophic lateral sclerosis and schizophrenia

    Get PDF
    A. Palotie on työryhmän Schizophrenia Working Grp Psychiat jäsen.We have previously shown higher-than-expected rates of schizophrenia in relatives of patients with amyotrophic lateral sclerosis (ALS), suggesting an aetiological relationship between the diseases. Here, we investigate the genetic relationship between ALS and schizophrenia using genome-wide association study data from over 100,000 unique individuals. Using linkage disequilibrium score regression, we estimate the genetic correlation between ALS and schizophrenia to be 14.3% (7.05-21.6; P = 1 x 10(-4)) with schizophrenia polygenic risk scores explaining up to 0.12% of the variance in ALS (P = 8.4 x 10(-7)). A modest increase in comorbidity of ALS and schizophrenia is expected given these findings (odds ratio 1.08-1.26) but this would require very large studies to observe epidemiologically. We identify five potential novel ALS-associated loci using conditional false discovery rate analysis. It is likely that shared neurobiological mechanisms between these two disorders will engender novel hypotheses in future preclinical and clinical studies.Peer reviewe

    Mechanism of Elementary Catalytic Steps of Pyruvate Oxidase from Lactobacillus plantarum

    No full text
    Single steps in the catalytic cycle of pyruvate oxidase from Lactobacillus plantarum have been characterized kinetically and mechanistically by stopped-flow in combination with kinetic solvent isotope effect studies. Reversible substrate binding of pyruvate occurs with an on-rate of 6.5 × 104 M-1 s-1 and an off-rate of pyruvate of 20 s-1. Decarboxylation of the intermediate lactyl-ThDP and the reduction of FAD which consists of two consecutive single electron-transfer steps from HEThDP to FAD occur with rates of about kdec = 112 s-1 and kred = 422 s-1. Flavin radical intermediates are not observed during reduction, and kinetic solvent isotope effects are absent, indicating that electron transfer and protonation processes are not rate limiting in the overall reduction process. Reoxidation of FADH2 by O2 to yield H2O2 takes place at a pseudo-first-order rate of about 35 s-1 in air-saturated buffer. A comparable value of about 35 s-1 was estimated for the phosphorolysis of the acetyl-ThDP intermediate at phosphate saturation. In competition with phosphorolysis, enzyme-bound acetyl-ThDP is hydrolyzed with a rate k = 0.03 s-1. This is the first report in which the reaction of enzyme-bound acetyl-ThDP with phosphate and OH- is monitored directly by FAD absorbance changes using the sequential stopped-flow technique

    A Δ38 Deletion Variant of Human Transketolase as a Model of Transketolase-Like Protein 1 Exhibits No Enzymatic Activity

    Get PDF
    <div><p>Besides transketolase (TKT), a thiamin-dependent enzyme of the pentose phosphate pathway, the human genome encodes for two closely related transketolase-like proteins, which share a high sequence identity with TKT. Transketolase-like protein 1 (TKTL1) has been implicated in cancerogenesis as its cellular expression levels were reported to directly correlate with invasion efficiency of cancer cells and patient mortality. It has been proposed that TKTL1 exerts its function by catalyzing an unusual enzymatic reaction, a hypothesis that has been the subject of recent controversy. The most striking difference between TKTL1 and TKT is a deletion of 38 consecutive amino acids in the N-terminal domain of the former, which constitute part of the active site in authentic TKT. Our structural and sequence analysis suggested that TKTL1 might not possess transketolase activity. In order to test this hypothesis in the absence of a recombinant expression system for TKTL1 and resilient data on its biochemical properties, we have engineered and biochemically characterized a “pseudo-TKTL1” Δ38 deletion variant of human TKT (TKTΔ38) as a viable model of TKTL1. Although the isolated protein is properly folded under <em>in vitro</em> conditions, both thermal stability as well as stability of the TKT-specific homodimeric assembly are markedly reduced. Circular dichroism and NMR spectroscopic analysis further indicates that TKTΔ38 is unable to bind the thiamin cofactor in a specific manner, even at superphysiological concentrations. No transketolase activity of TKTΔ38 can be detected for conversion of physiological sugar substrates thus arguing against an intrinsically encoded enzymatic function of TKTL1 in tumor cell metabolism.</p> </div

    Structural basis for membrane binding and catalytic activation of the peripheral membrane enzyme pyruvate oxidase from Escherichia coli

    No full text
    The thiamin- and flavin-dependent peripheral membrane enzyme pyruvate oxidase from E. coli catalyzes the oxidative decarboxylation of the central metabolite pyruvate to CO2 and acetate. Concomitant reduction of the enzyme-bound flavin triggers membrane binding of the C terminus and shuttling of 2 electrons to ubiquinone 8, a membrane-bound mobile carrier of the electron transport chain. Binding to the membrane in vivo or limited proteolysis in vitro stimulate the catalytic proficiency by 2 orders of magnitude. The molecular mechanisms by which membrane binding and activation are governed have remained enigmatic. Here, we present the X-ray crystal structures of the full-length enzyme and a proteolytically activated truncation variant lacking the last 23 C-terminal residues inferred as important in membrane binding. In conjunction with spectroscopic results, the structural data pinpoint a conformational rearrangement upon activation that exposes the autoinhibitory C terminus, thereby freeing the active site. In the activated enzyme, Phe-465 swings into the active site and wires both cofactors for efficient electron transfer. The isolated C terminus, which has no intrinsic helix propensity, folds into a helical structure in the presence of micelles

    Analysis of cofactor binding in full-length TKT and variant TKTΔ38 by near-UV CD spectroscopy and 1H NMR spectroscopy.

    No full text
    <p>(A) Near-UV CD spectra of 2 mg/ml protein in 50 mM glycyl-glycine buffer, pH 7.6 and 500 mM NaCl. Note the absence of the negative CD signal at around 320 nm in case of TKTΔ38, which indicates an impaired binding of the thiamin cofactor in the deletion variant. (B) 1H NMR spectroscopic analysis of supernatant obtained after acid quench treatment of as-isolated TKTΔ38 and full-length TKT. A down-field section of the NMR spectrum (10.0–9.5 ppm) is shown, where the signal of C2-H of the cofactor thiazolium appears. We were unable to detect even traces of the thiamin cofactor in case of TKTΔ38 in contrast to full-length TKT that contains tightly bound ThDP.</p
    corecore