23 research outputs found

    Investigations Into Whole Water, Prototropic and Amide Proton Exchange in Lanthanide(III) DOTA-Tetraamide Chelates

    Get PDF
    Lanthanide(III) chelates of DOTA-tetraamide ligands have been an area of particular interest since the discovery that water exchange kinetics are dramatically affected by the switch from acetate to amide side-chain donors. More recently these chelates have attracted interest as potential PARACEST agents for use in MRI. In this paper we report the results of studies using chemical exchange saturation transfer (CEST) and some more recently reported chelates to re-examine the exchange processes in this class of chelate. We find that the conclusions of Parker and Aime are, for the most part, solid; water exchange is slow and a substantial amount of prototropic exchange occurs in aqueous solution. The extent of prototropic exchange increases as the pH increases above 8, leading to higher relaxivities at high pH. However, amide protons are found to contribute only a small amount to the relaxivity at high pH

    Properties, Solution State Behavior, and Crystal Structures of Chelates of DOTMA

    Get PDF
    The chemistry of polyamino carboxylates and their use as ligands for Ln(3+) ions is of considerable interest from the point of view of the development of new imaging agents. Of particular interest is the chemistry of the macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) and its derivatives. Herein we report that the tetramethylated DOTA derivative, DOTMA, possess several properties that, from an imaging agent development point of view, are more advantageous than those of the parent DOTA. In particular, the Ln(3+) chelates of DOTMA exhibit a marked preference for the monocapped twisted square antiprismatic coordination isomer which imparts more rapid water exchange kinetics on the chelates; τ(M)(298) was determined to be 85 ns for GdDOTMA. Differential analysis of the (17)O R(2ρ) temperature profiles of both GdDOTA and GdDOTMA afforded the τ(M)(298) values for the square (SAP) and twisted square antiprismatic (TSAP) isomers of each chelate that were almost identical: 365 ns (SAP) and 52 ns (TSAP). The origin of this accelerated water exchange in the TSAP isomer appears to be the slightly longer Gd-OH(2) bond distance (2.50 Å) that is observed in the crystal structure of GdDOTMA which crystallizes in the P(2) space group as a TSAP isomer. The Ln(3+) chelates of DOTMA also exhibit high thermodynamic stabilities ranging from log K(ML) = 20.5 for CeDOTMA, 23.5 for EuDOTMA and YbDOTMA comparable to, but a shade lower than, those of DOTA

    How the Chemical Properties of GBCAs Influence Their Safety Profiles In Vivo

    No full text
    The extracellular class of gadolinium-based contrast agents (GBCAs) is an essential tool for clinical diagnosis and disease management. In order to better understand the issues associated with GBCA administration and gadolinium retention and deposition in the human brain, the chemical properties of GBCAs such as relative thermodynamic and kinetic stabilities and their likelihood of forming gadolinium deposits in vivo will be reviewed. The chemical form of gadolinium causing the hyperintensity is an open question. On the basis of estimates of total gadolinium concentration present, it is highly unlikely that the intact chelate is causing the T1 hyperintensities observed in the human brain. Although it is possible that there is a water-soluble form of gadolinium that has high relaxitvity present, our experience indicates that the insoluble gadolinium-based agents/salts could have high relaxivities on the surface of the solid due to higher water access. This review assesses the safety of GBCAs from a chemical point of view based on their thermodynamic and kinetic properties, discusses how these properties influence in vivo behavior, and highlights some clinical implications regarding the development of future imaging agents

    Gallium(III) Complexes of DOTA and DOTA-Monoamide: Kinetic and Thermodynamic Studies

    No full text
    International audienceGiven the practical advantages of the Ga-68 isotope in positron emission tomography applications, gallium complexes are gaining increasing importance in biomedical imaging. However, the strong tendency of Ga3+ to hydrolyze and the slow formation and very high stability of macrocyclic complexes altogether render Ga3+ coordination chemistry difficult and explain why stability and kinetic data on Ga3+ complexes are rather scarce. Here we report solution and solid-state studies of Ga3+ complexes formed with the macrocyclic ligand 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid, (DOTA)(4-), and its mono(n-butylamide) derivative, (DO3AM(Bu))(3-). Thermodynamic stability constants, log K(GaDOTA) = 26.05 and log K(GaDO3AM(Bu)) = 24.64, were determined by out-of-cell pH-potentiometric titrations. Due to the very slow formation and dissociation of the complexes, equilibration times of up to similar to 4 weeks were necessary. The kinetics of complex dissociation were followed by Ga-71 NMR under both acidic and alkaline conditions. The GaDOTA complex is significantly more inert (tau(1/2) similar to 12.2 d at pH = 0 and tau(1/2) similar to 6.2 h at pH = 10) than the GaDO3AM(Bu) analogue (tau(1/2) similar to 2.7 d at pH = 0 and tau(1/2) similar to 0.7 h at pH = 10). Nevertheless, the kinetic inertness of both chelates is extremely high and approves the application of Ga3+ complexes of such DOTA-like ligands in molecular imaging. The solid-state structure of the GaDOTA complex, crystallized from a strongly acidic solution (pH < 1), evidenced a diprotonated form with protons localized on the free carboxylate pendants

    Synthesis and Evaluation of Lanthanide Ion DOTA-tetraamide Complexes bearing Peripheral Hydroxyl Groups

    Get PDF
    The use of lanthanide-based contrast agents for magnetic resonance imaging has become an integral component of this important diagnostic modality. These inert chelates typically possess high thermodynamic stability constants that serve as a predictor for in vivo stability and low toxicity. Recently, a new class of contrast agents was reported having a significantly lower degree of thermodynamic stability while exhibiting biodistribution profiles indicative of high stability under biological conditions. These observations are suggestive that the nature of contrast agent stability is also dependent upon the kinetics of complex dissociation, a feature of potential importance when contemplating the design of new chelates for in vivo use. We present a study of the kinetics of acid-catalyzed dissociation, thermodynamic stability, serum stability, and biodistribution of a series of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)–tetraamide complexes that have been substituted with peripheral hydroxyl groups. The data indicate that these nontraditional contrast agents exhibit in vivo stability comparable to that of agents with much higher log K ML values, demonstrating the important contribution of kinetic inertness

    Potentiometric and Relaxometric Properties of a Gadolinium-based MRI Contrast Agent for Sensing Tissue pH

    Get PDF
    The pH-sensitive contrast agent, GdDOTA-4AmP (Gd1) has been successfully used to map tissue pH by MRI. Further studies now demonstrate that two distinct chemical forms of the complex can be prepared depending upon the pH at which Gd3+ is mixed with ligand 1. The desired pH-sensitive form of this complex, referred to here as a Type II complex, is obtained as the exclusive product only when the complexation reaction is performed above pH 8. At lower pH values, a second complex is formed that, by analogy with an intermediate formed during the preparation of GdDOTA, we tentatively assign to a Type I complex where the Gd3+ is coordinated only by the appended side-chain arms of 1. The proportion of Type I complex formed is largely determined by the pH of the complexation reaction. The magnitude of the pH-dependent change in the relaxivity of Gd1 was found to be less than earlier reported (Zhang, S.; Wu, K.; Sherry, A. D. Angew. Chem., Int. Ed.1999, 38, 3192), likely due to contamination of the earlier sample by an unknown amount of Type I complex. Examination of the nuclear magnetic relaxation dispersion and relaxivity temperature profiles, coupled with information from potentiometric titrations, shows that the amphoteric character of the phosphonate side chains enables rapid prototropic exchange between the single bound water of the complex with the bulk water thereby giving Gd1 a unique pH-dependent relaxivity that is quite useful for the pH mapping of tissues by MRI

    Pyclen-Based Ligands Bearing Pendant Picolinate Arms for Gadolinium Complexation

    No full text
    We report the synthesis of two pyclen-based regioisomer ligands (pyclen = 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca1(15),11,13-triene) functionalized with picolinic acid pendant arms either at positions 3,9-pc2pa (L5) or 3,6-pc2pa (L6) of the macrocyclic fragment. The ligands were prepared by regiospecific protection of one of the amine nitrogen atom of the macrocycle using Boc and Alloc protecting groups, respectively. The X-ray structure of the Gd(III) complex of L5 contains trinuclear [(GdL5)3(H2O)3] 3+ entities in which the monomeric units are joined by 2- 1 : 1 carboxylate groups. However, the 1H and 89Y NMR spectra of its Y(III) analogue support the formation of monomeric complexes in solution. The Tb(III) complexes are highly luminescent, with emission quantum yields of up to 50% for [TbL5] + . The luminescence lifetimes recorded in H2O and D2O solutions indicate the presence of a water molecule coordinated to the metal ion, as also evidenced by the 1H relaxivities measured for the Gd(III) analogues. The Gd(III) complexes present very different exchange rates of the coordinated water molecule (kex 298 = 87.1 and 1.06 106 s -1 for [GdL5] + and [GdL6] + , respectively). The very high water exchange rate of [GdL5] + is associated to the steric hindrance originated by the coordination of the ligand around the water binding site, which favors a dissociatively activated water exchange process. The Gd(III) complexes present rather high thermodynamic stabilities (logKGdL = 20.47 and 19.77 for [GdL5] + and [GdL6] + , respectively). Furthermore, these complexes are remarkably inert with respect to their acid-assisted dissociation, in particular the complex of L5

    The role of the capping bond effect on pyclen Y-nat(3+)/Y-90(3+) chelates: full control of the regiospecific N-functionalization makes the difference

    Get PDF
    International audienceThanks to a smart regiospecific N-functionalization, a pyclen based ligand bearing one picolinate and two acetate arms organized in a dissymmetric manner was synthesized for Y3+ complexation, and compared to its symmetric analogue. The nature of the capping bonds around the metal coordination environment has a dramatic effect on the properties of the chelate, the Y-nat(3+) and Y-90(3+) dissymmetric derivatives presenting enhanced thermodynamic stability and kinetic inertness

    Stable and Inert Yttrium(III) Complexes with Pyclen-Based Ligands Bearing Pendant Picolinate Arms: Toward New Pharmaceuticals for β-Radiotherapy

    No full text
    International audienceWe report the synthesis of two azaligands based on the pyclen macrocyclic platform containing two picolinate and one acetate pendant arms. The two ligands differ in the relative positions of the pendant functions, which are arranged either in a symmetrical (L3) or nonsymmetrical (L4) fashion. The complexation properties of the ligands toward natY3+ and 90Y3+ were investigated to assess their potential as chelating units for radiopharmaceutical applications. The X-ray structures of the YL3 and YL4 complexes show nonadentate binding of the ligand to the metal ions. A multinuclear 1H, 13C, and 89Y NMR study shows that the complexes present a structure in solution similar to that observed in the solid state. The two complexes present very high thermodynamic stability constants (log KYL = 23.36(2) and 23.07(2) for YL3 and YL4, respectively). The complexes also show a remarkable inertness with respect to their proton-assisted dissociation, especially YL4. 90Y radiolabeling was proved to be efficient under mild conditions. The 90YL3 and 90YL4 radiochelates were found to be more stable than 90Y(DOTA)
    corecore