46 research outputs found

    Honeybee linguistics—a comparative analysis of the waggle dance among species of Apis

    Get PDF
    All honeybees use the waggle dance to recruit nestmates. Studies on the dance precision of Apis mellifera have shown that the dance is often imprecise. Two hypotheses have been put forward aimed at explaining this imprecision. The first argues that imprecision in the context of foraging is adaptive as it ensures that the dance advertises the same patch size irrespective of distance. The second argues that the bees are constrained in their ability to be more precise, especially when the source is nearby. Recent studies have found support for the latter hypothesis but not for the “tuned-error” hypothesis, as the adaptive hypothesis became known. Here we investigate intra-dance variation among Apis species. We analyse the dance precision of A. florea, A. dorsata, and A. mellifera in the context of foraging and swarming. A. mellifera performs forage dances in the dark, using gravity as point of reference, and in the light when dancing for nest sites, using the sun as point of reference. Both A. dorsata and A. florea are open-nesting species; they do not use a different point of reference depending on context. A. florea differs from both A. mellifera and A. dorsata in that it dances on a horizontal surface and does not use gravity but instead “points” directly toward the goal when indicating direction. Previous work on A. mellifera has suggested that differences in dance orientation and point of reference can affect dance precision. We find that all three species improve dance precision with increasing waggle phase duration, irrespective of differences in dance orientation, and point of reference. When dancing for sources nearby, dances are highly variable. When the distance increases, dance precision converges. The exception is dances performed by A. mellifera on swarms. Here, dance precision decreases as the distance increases. We also show that the size of the patch advertised increases with increasing distance, contrary to what is predicted under the tuned-error hypothesis

    Security in banking

    Get PDF
    We examine the security of the Australian card payment system by analysing existing cryptographic protocols. In this analysis, we examine TDES and DES-V key derivation and the use of secure cryptographic devices, then contrast this with alternative mechanisms to enable secure card payments. We compare current Australian cryptographic methods with their international counterparts, such as the ANSI methods, and then motivate alternative methods for authenticated encryption in card payment systems

    TR-31 and AS 2805 (Non)equivalence report

    Get PDF
    We examine the security of the Australian card payment system by analysing existing cryptographic protocols in this analysis. We compare current Australian cryptographic methods with their international counterparts, such as the ANSI TR-31 methods. Then, finally, we formulate a formal difference between the two schemes using security proofs

    Local interactions and global properties of wild, free-ranging stickleback shoals

    Get PDF
    Funding: Australian Research Council. A.J.W.W. and T.M.S. were supported by a Discovery Project Grant from the Australian Research Council. D.J.T.S. and J.E.H.-R. were supported by a Knut & Alice Wallenberg Foundation Grant.Collective motion describes the global properties of moving groups of animals and the self-organized, coordinated patterns of individual behaviour that produce them. We examined the group-level patterns and local interactions between individuals in wild, free-ranging shoals of three-spine sticklebacks, Gasterosteus aculeatus. Our data reveal that the highest frequencies of near-neighbour encounters occur at between one and two body lengths from a focal fish, with the peak frequency alongside a focal individual. Fish also show the highest alignment with these laterally placed individuals, and generally with animals in front of themselves. Furthermore, fish are more closely matched in size, speed and orientation to their near neighbours than to more distant neighbours, indicating local organization within groups. Among the group level properties reported here, we find that polarization is strongly influenced by group speed, but also the variation in speed among individuals and the nearest neighbour distances of group members. While we find no relationship between group order and group size, we do find that larger groups tend to have lower nearest neighbour distances, which in turn may be important in maintaining group order.Publisher PDFPeer reviewe

    Cohesion, order and information flow in the collective motion of mixed-species shoals

    Get PDF
    Financial support came from the Australian Research Council (grant nos. DP 160103905 and DE 160100630).Despite the frequency with which mixed-species groups are observed in nature, studies of collective behaviour typically focus on single-species groups. Here, we quantify and compare the patterns of interactions between three fish species, threespine sticklebacks (Gasterosteus aculeatus), ninespine sticklebacks (Pungitius pungitius) and roach (Rutilus rutilus) in both single- and mixed-species shoals in the laboratory. Pilot data confirmed that the three species form both single- and mixed-species shoals in the wild. In our laboratory study, we found that single-species groups were more polarized than mixed-species groups, while single-species groups of threespine sticklebacks and roach were more cohesive than mixed shoals of these species. Furthermore, while there was no difference between the inter-individual distances between threespine and ninespine sticklebacks within mixed-species groups, there was some evidence of segregation by species in mixed groups of threespine sticklebacks and roach. There were differences between treatments in mean pairwise transfer entropy, and in particular we identify species-differences in information use within the mixed-species groups, and, similarly, differences in responses to conspecifics and heterospecifics in mixed-species groups. We speculate that differences in the patterns of interactions between species in mixed-species groups may determine patterns of fission and fusion in such groups.Publisher PDFPeer reviewe

    Examination of an averaging method for estimating repulsion and attraction interactions in moving groups.

    Get PDF
    Groups of animals coordinate remarkable, coherent, movement patterns during periods of collective motion. Such movement patterns include the toroidal mills seen in fish shoals, highly aligned parallel motion like that of flocks of migrating birds, and the swarming of insects. Since the 1970's a wide range of collective motion models have been studied that prescribe rules of interaction between individuals, and that are capable of generating emergent patterns that are visually similar to those seen in real animal group. This does not necessarily mean that real animals apply exactly the same interactions as those prescribed in models. In more recent work, researchers have sought to infer the rules of interaction of real animals directly from tracking data, by using a number of techniques, including averaging methods. In one of the simplest formulations, the averaging methods determine the mean changes in the components of the velocity of an individual over time as a function of the relative coordinates of group mates. The averaging methods can also be used to estimate other closely related quantities including the mean relative direction of motion of group mates as a function of their relative coordinates. Since these methods for extracting interaction rules and related quantities from trajectory data are relatively new, the accuracy of these methods has had limited inspection. In this paper, we examine the ability of an averaging method to reveal prescribed rules of interaction from data generated by two individual based models for collective motion. Our work suggests that an averaging method can capture the qualitative features of underlying interactions from trajectory data alone, including repulsion and attraction effects evident in changes in speed and direction of motion, and the presence of a blind zone. However, our work also illustrates that the output from a simple averaging method can be affected by emergent group level patterns of movement, and the sizes of the regions over which repulsion and attraction effects are apparent can be distorted depending on how individuals combine interactions with multiple group mates

    An examination of force maps targeted at orientation interactions in moving groups.

    Get PDF
    Force mapping is an established method for inferring the underlying interaction rules thought to govern collective motion from trajectory data. Here we examine the ability of force maps to reconstruct interactions that govern individual's tendency to orient, or align, their heading within a moving group, one of the primary factors thought to drive collective motion, using data from three established general collective motion models. Specifically, our force maps extract how individuals adjust their direction of motion on average as a function of the distance to neighbours and relative alignment in heading with these neighbours, or in more detail as a function of the relative coordinates and relative headings of neighbours. We also examine the association between plots of local alignment and underlying alignment rules. We find that the simpler force maps that examined changes in heading as a function of neighbour distances and differences in heading can qualitatively reconstruct the form of orientation interactions, but also overestimate the spatial range over which these interactions apply. More complex force maps that examine heading changes as a function of the relative coordinates of neighbours (in two spatial dimensions), can also reveal underlying orientation interactions in some cases, but are relatively harder to interpret. Responses to neighbours in both the simpler and more complex force maps are affected by group-level patterns of motion. We also find a correlation between the sizes of regions of high alignment in local alignment plots and the size of the region over which alignment rules apply when only an alignment interaction rule is in action. However, when data derived from more complex models is analysed, the shapes of regions of high alignment are clearly influenced by emergent patterns of motion, and these regions of high alignment can appear even when there is no explicit direct mechanism that governs alignment

    Collective states and their transitions in football

    No full text
    Movement, positioning and coordination of player formations is a key aspect for the performance of teams within field-based sports. The increased availability of player tracking data has given rise to numerous studies that focus on the relationship between simple descriptive statistics surrounding team formation and performance. While these existing approaches have provided a high-level a view of team-based spatial formations, there is limited research on the nature of collective movement across players within teams and the establishment of stable collective states within game play. This study draws inspiration from the analysis of collective movement in nature, such as that observed within schools of fish and flocking birds, to explore the existence of collective states within the phases of play in soccer. Order parameters and metrics describing group motion and shape are derived from player movement tracks to uncover the nature of the team’s collective states and transitions. This represents a unique addition to the current body of work around the analysis of player movement in team sports. The results from this study demonstrate that sequences of ordered collective behaviours exist with relatively rapid transitions between highly aligned polar and un-ordered swarm behaviours (and vice-versa). Defensive phases of play have a higher proportion of ordered team movement than attacking phases, indicating that movements linked with attacking tactics, such as player dispersion to generate passing and shooting opportunities leads to lower overall collective order. Exploration within this study suggests that defensive tactics, such as reducing the depth or width to close passing opportunities, allows for higher team movement speeds and increased levels of collective order. This study provides a novel view of player movement by visualising the collective states present across the phases of play in football

    Effects of environmental heterogeneity on species spreading via numerical analysis of some free boundary models

    No full text
    This paper investigates the effect of environmental heterogeneity on species spreading via numerical simulation of suitable reaction-diffusion models with free boundaries. We focus on the changes of long-time dynamics (establishment or extinction) and spreading speeds of the species as the parameters describing the heterogeneity of the environment are varied. For the single species model in time-periodic environment and in space-periodic environment theoretically treated in [15,16], we obtain more detailed properties here. Among other results, our numerical simulation suggests that, in a time-periodic or space-periodic environment, moderate increase of the oscillation scale enhances the chances of establishment as well as the spreading speed of the species. We also numerically examine a related model with two competing species, which was treated in [34,28,24] recently and reduces to the single species free boundary model when one of the species is absent. Our numerical results, obtained by varying the parameters in the time-periodic and space-periodic terms of the model, suggest that heterogeneity of the environment enhances the invasion of the two species (as in the single species model), although there are subtle differences of the influences felt by the two. Some intriguing phenomena revealed in our simulations suggest that heterogeneity of the environment decreases the level of predictability of the competition outcome

    Force maps of Δ<i>θ</i>/Δ<i>t</i> as a function of (<i>x</i>, <i>y</i>, <i>φ</i><sub><i>i</i>,<i>j</i></sub>) derived from simulations of the ODE model that generated swarming motion; corresponding model parameter values are provided in S5 Table of the S1 File, item (c).

    No full text
    Force maps of Δθ/Δt as a function of (x, y, φi,j) derived from simulations of the ODE model that generated swarming motion; corresponding model parameter values are provided in S5 Table of the S1 File, item (c).</p
    corecore