181 research outputs found

    Quantum gate characterization in an extended Hilbert space

    Get PDF
    We describe an approach for characterizing the process of quantum gates using quantum process tomography, by first modeling them in an extended Hilbert space, which includes non-qubit degrees of freedom. To prevent unphysical processes from being predicted, present quantum process tomography procedures incorporate mathematical constraints, which make no assumptions as to the actual physical nature of the system being described. By contrast, the procedure presented here ensures physicality by placing physical constraints on the nature of quantum processes. This allows quantum process tomography to be performed using a smaller experimental data set, and produces parameters with a direct physical interpretation. The approach is demonstrated by example of mode-matching in an all-optical controlled-NOT gate. The techniques described are non-specific and could be applied to other optical circuits or quantum computing architectures.Comment: 4 pages, 2 figures, REVTeX (published version

    The Founder Strains of the Collaborative Cross Express a Complex Combination of Advantageous and Deleterious Traits for Male Reproduction

    Get PDF
    Surveys of inbred strains of mice are standard approaches to determine the heritability and range of phenotypic variation for biomedical traits. In addition, they may lead to the identification of novel phenotypes and models of human disease. Surprisingly, male reproductive phenotypes are among the least-represented traits in the Mouse Phenome Database. Here we report the results of a broad survey of the eight founder inbred strains of both the Collaborative Cross (CC) and the Diversity Outbred populations, two new mouse resources that are being used as platforms for systems genetics and sources of mouse models of human diseases. Our survey includes representatives of the three main subspecies of the house mice and a mix of classical and wild-derived inbred strains. In addition to standard staples of male reproductive phenotyping such as reproductive organ weights, sperm counts, and sperm morphology, our survey includes sperm motility and the first detailed survey of testis histology. As expected for such a broad survey, heritability varies widely among traits. We conclude that although all eight inbred strains are fertile, most display a mix of advantageous and deleterious male reproductive traits. The CAST/EiJ strain is an outlier, with an unusual combination of deleterious male reproductive traits including low sperm counts, high levels of morphologically abnormal sperm, and poor motility. In contrast, sperm from the PWK/PhJ and WSB/EiJ strains had the greatest percentages of normal morphology and vigorous motility. Finally, we report an abnormal testis phenotype that is highly heritable and restricted to the WSB/EiJ strain. This phenotype is characterized by the presence of a large, but variable, number of vacuoles in at least 10% of the seminiferous tubules. The onset of the phenotype between 2 and 3 wk of age is temporally correlated with the formation of the blood-testis barrier. We speculate that this phenotype may play a role in high rates of extinction in the CC project and in the phenotypes associated with speciation in genetic crosses that use the WSB/EiJ strain as representative of the Mus muculus domesticus subspecies

    Identification of epitopes recognised by mucosal CD4+ T-cell populations from cattle experimentally colonised with Escherichia coli O157:H7

    Get PDF
    Additional file 5. Sequence alignment of Intimin epitopes against Intimin sequences from non-O157 EHEC serotypes. Alignment of Intimin CD4+ T-cell epitope sequences with representative Intimin sequences from EHEC serotypes O145, O127, O26, O103, O121, O45 and O111. Percentage values indicate % similarity to the EHEC O157:H7 reference sequence

    A Broadly Applicable Strategy for Entry into Homogeneous Nickel(0) Catalysts from Air-Stable Nickel(II) Complexes

    Get PDF
    A series of air-stable nickel complexes of the form L[subscript 2]Ni(aryl) X (L = monodentate phosphine, X = Cl, Br) and LNi(aryl)X (L = bis-phosphine) have been synthesized and are presented as a library of precatalysts suitable for a wide variety of nickel-catalyzed transformations. These complexes are easily synthesized from low-cost NiCl[subscript 2]·6H[subscript 2]O or NiBr[subscript 2]·3H[subscript 2]O and the desired ligand followed by addition of 1 equiv of Grignard reagent. A selection of these complexes were characterized by single-crystal X-ray diffraction, and an analysis of their structural features is provided. A case study of their use as precatalysts for the nickel-catalyzed carbonyl-ene reaction is presented, showing superior reactivity in comparison to reactions using Ni(cod)[subscript 2]. Furthermore, as the precatalysts are all stable to air, no glovebox or inert-atmosphere techniques are required to make use of these complexes for nickel-catalyzed reactions.National Institute of General Medical Sciences (U.S.) (GM63755)National Science Foundation (U.S.). Graduate Research Fellowshi

    TREASUREHUNT: Transients and Variability Discovered with HST in the JWST North Ecliptic Pole Time-domain Field

    Get PDF
    The James Webb Space Telescope (JWST) North Ecliptic Pole (NEP) Time-domain Field (TDF) is a >14′ diameter field optimized for multiwavelength time-domain science with JWST. It has been observed across the electromagnetic spectrum both from the ground and from space, including with the Hubble Space Telescope (HST). As part of HST observations over three cycles (the “TREASUREHUNT” program), deep images were obtained with the Wide Field Camera on the Advanced Camera for Surveys in F435W and F606W that cover almost the entire JWST NEP TDF. Many of the individual pointings of these programs partially overlap, allowing an initial assessment of the potential of this field for time-domain science with HST and JWST. The cumulative area of overlapping pointings is ∼88 arcmin2, with time intervals between individual epochs that range between 1 day and 4+ yr. To a depth of m AB ≃ 29.5 mag (F606W), we present the discovery of 12 transients and 190 variable candidates. For the variable candidates, we demonstrate that Gaussian statistics are applicable and estimate that ∼80 are false positives. The majority of the transients will be supernovae, although at least two are likely quasars. Most variable candidates are active galactic nuclei (AGNs), where we find 0.42% of the general z ≲ 6 field galaxy population to vary at the ∼3σ level. Based on a 5 yr time frame, this translates into a random supernova areal density of up to ∼0.07 transients arcmin−2 (∼245 deg−2) per epoch and a variable AGN areal density of ∼1.25 variables arcmin−2 (∼4500 deg−2) to these depths

    Historical influences on the current provision of multiple ecosystem services: is there a legacy of past landcover?

    Get PDF
    Ecosystem service provision varies temporally in response to natural and human-induced factors, yet research in this field is dominated by analyses that ignore the time-lags and feedbacks that occur within socio-ecological systems. The implications of this have been unstudied, but are central to understanding how service delivery will alter due to future land-use/cover change. Urban areas are expanding faster than any other land-use, making cities ideal study systems for examining such legacy effects. We assess the extent to which present-day provision of a suite of eight ecosystem services, quantified using field-gathered data, is explained by current and historical (stretching back 150 years) landcover. Five services (above-ground carbon density, recreational use, bird species richness, bird density, and a metric of recreation experience quality (continuity with the past) were more strongly determined by past landcover. Time-lags ranged from 20 (bird species richness and density) to over 100 years (above-ground carbon density). Historical landcover, therefore, can have a strong influence on current service provision. By ignoring such time-lags, we risk drawing incorrect conclusions regarding how the distribution and quality of some ecosystem services may alter in response to land-use/cover change. Although such a finding adds to the complexity of predicting future scenarios, ecologists may find that they can link the biodiversity conservation agenda to the preservation of cultural heritage, and that certain courses of action provide win-win outcomes across multiple environmental and cultural goods

    Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH -Mutant Molecular Profiles

    Get PDF
    Cholangiocarcinoma (CCA) is an aggressive malignancy of the bile ducts, with poor prognosis and limited treatment options. Here, we describe the integrated analysis of somatic mutations, RNA expression, copy number, and DNA methylation by The Cancer Genome Atlas of a set of predominantly intrahepatic CCA cases and propose a molecular classification scheme. We identified an IDH mutant-enriched subtype with distinct molecular features including low expression of chromatin modifiers, elevated expression of mitochondrial genes, and increased mitochondrial DNA copy number. Leveraging the multi-platform data, we observed that ARID1A exhibited DNA hypermethylation and decreased expression in the IDH mutant subtype. More broadly, we found that IDH mutations are associated with an expanded histological spectrum of liver tumors with molecular features that stratify with CCA. Our studies reveal insights into the molecular pathogenesis and heterogeneity of cholangiocarcinoma and provide classification information of potential therapeutic significance

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore