6,055 research outputs found
Periodic ripples in suspended graphene
We study the mechanism of wrinkling of suspended graphene, by means of
atomistic simulations. We argue that the structural instability under edge
compression is the essential physical reason for the formation of periodic
ripples in graphene. The ripple wavelength and out-of-plane amplitude are found
to obey 1/4-power scaling laws with respect to edge compression. Our results
also show that parallel displacement of the clamped boundaries can induce
periodic ripples, with oscillation amplitude roughly proportional to the 1/4
power of edge displacement. The results are fundamental to graphene's
applications in electronics.Comment: 5 Figure
Mechanical properties of carbynes investigated by ab initio total-energy calculations
As sp carbon chains (carbynes) are relatively rigid molecular objects, can we
exploit them as construction elements in nanomechanics? To answer this
question, we investigate their remarkable mechanical properties by ab-initio
total-energy simulations. In particular, we evaluate their linear response to
small longitudinal and bending deformations and their failure limits for
longitudinal compression and elongation.Comment: 6 pages, 4 figures, 1 tabl
Pseudomagnetic fields and ballistic transport in a suspended graphene sheet
We study a suspended graphene sheet subject to the electric field of a gate
underneath. We compute the elastic deformation of the sheet and the
corresponding effective gauge field, which modifies the electronic transport.
In a clean system the two-terminal conductance of the sample is reduced below
the ballistic limit and is almost totally suppressed at low carrier
concentrations in samples under tension. Residual disorder restores a small
finite conductivity.Comment: 4 page
Modeling the buckling and delamination of thin films
I study numerically the problem of delamination of a thin film elastically
attached to a rigid substrate. A nominally flat elastic thin film is modeled
using a two-dimensional triangular mesh. Both compression and bending
rigidities are included to simulate compression and bending of the film. The
film can buckle (i.e., abandon its flat configuration) when enough compressive
strain is applied. The possible buckled configurations of a piece of film with
stripe geometry are investigated as a function of the compressive strain. It is
found that the stable configuration depends strongly on the applied strain and
the Poisson ratio of the film. Next, the film is considered to be attached to a
rigid substrate by springs that can break when the detaching force exceeds a
threshold value, producing the partial delamination of the film. Delamination
is induced by a mismatch of the relaxed configurations of film and substrate.
The morphology of the delaminated film can be followed and compared with
available experimental results as a function of model parameters.
`Telephone-cord', polygonal, and `brain-like' patterns qualitatively similar to
experimentally observed configurations are obtained in different parameter
regions. The main control parameters that select the different patterns are the
mismatch between film and substrate and the degree of in-plane relaxation
within the unbuckled regions.Comment: 8 pages, 10 figure
Impact of elasticity on the piezoresponse of adjacent ferroelectric domains investigated by scanning force microscopy
As a consequence of elasticity, mechanical deformations of crystals occur on
a length scale comparable to their thickness. This is exemplified by applying a
homogeneous electric field to a multi-domain ferroelectric crystal: as one
domain is expanding the adjacent ones are contracting, leading to clamping at
the domain boundaries. The piezomechanically driven surface corrugation of
micron-sized domain patterns in thick crystals using large-area top electrodes
is thus drastically suppressed, barely accessible by means of piezoresponse
force microscopy
Prescribed pattern transformation in swelling gel tubes by elastic instability
We present a study on swelling-induced circumferential buckling of tubular
shaped gels. Inhomogeneous stress develops as gel swells under mechanical
constraints, which gives rise to spontaneous buckling instability without
external force. Full control over the post-buckling pattern is experimentally
demonstrated. A simple analytical model is developed using elastic energy to
predict stability and post-buckling patterns upon swelling. Analysis reveals
that height to diameter ratio is the most critical design parameter to
determine buckling pattern, which agrees well with experimental and numerical
results.Comment: 32 pages, 7 figure
Heavy Quarkonia Perspectives with Heavy-Ions in ATLAS
ATLAS will study a full range of observables and phenomena which characterize the hot dense medium formed in heavy-ion collisions, and in particular heavy quarkonia suppression which provides a handle on deconfinement mechanisms. As each quark-antiquark bound state is predicted to dissociate at a different temperature, the systematic measurement of the suppression of these resonances should provide some sort of thermometer of the early stage of the system evolution. We report on an evaluation of the ATLAS potential to measure resonances of the Upsilon and J/psi families created in Pb+Pb collisions
Control of Material Damping in High-Q Membrane Microresonators
We study the mechanical quality factors of bilayer aluminum/silicon-nitride
membranes. By coating ultrahigh-Q Si3N4 membranes with a more lossy metal, we
can precisely measure the effect of material loss on Q's of tensioned resonator
modes over a large range of frequencies. We develop a theoretical model that
interprets our results and predicts the damping can be reduced significantly by
patterning the metal film. Using such patterning, we fabricate Al-Si3N4
membranes with ultrahigh Q at room temperature. Our work elucidates the role of
material loss in the Q of membrane resonators and informs the design of hybrid
mechanical oscillators for optical-electrical-mechanical quantum interfaces
Pinning of a two-dimensional membrane on top of a patterned substrate: the case of graphene
We study the pinning of a two-dimensional membrane to a patterned substrate
within elastic theory both in the bending rigidity and in the strain dominated
regimes. We find that both the in-plane strains and the bending rigidity can
lead to depinning. We show from energetic arguments that the system experiences
a first order phase transition between the attached configuration to a
partially detached one when the relevant parameters of the substrate are
varied, and we construct a qualitative phase diagram. Our results are confirmed
through analytical solutions for some simple geometries of the substrate's
profile.Comment: Minor changes. Final version, as publishe
Is it possible to assign physical meaning to field theory with higher derivatives?
To overcome the difficulties with the energy indefiniteness in field theories
with higher derivatives, it is supposed to use the mechanical analogy, the
Timoshenko theory of the transverse flexural vibrations of beams or rods well
known in mechanical engineering. It enables one to introduce the notion of a
"mechanical" energy in such field models that is wittingly positive definite.
This approach can be applied at least to the higher derivative models which
effectively describe the extended localized solutions in usual first order
field theories (vortex solutions in Higgs models and so on). Any problems with
a negative norm ghost states and unitarity violation do not arise here.Comment: 16 pp, LaTeX, JINR E2-93-19
- …