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Pseudomagnetic fields and ballistic transport in a suspended graphene sheet

M. M. Fogler,1 F. Guinea,2 and M. I. Katsnelson3

1Department of Physics, University of California San Diego, La Jolla, 9500 Gilman Dr. CA 92093, USA
2Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Inés de la Cruz 3,

Madrid 28049, Spain and Donostia International Physics Center (DIPC),
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We study a suspended graphene sheet subject to the electric field of a gate underneath. We
compute the elastic deformation of the sheet and the corresponding effective gauge field, which
modifies the electronic transport. In a clean system the two-terminal conductance of the sample is
reduced below the ballistic limit and is almost totally suppressed at low carrier concentrations in
samples under tension. Residual disorder restores a small finite conductivity.

Introduction. Graphene layers which are one or a few
carbon atoms thick [1, 2] combine novel electronic en-
ergy spectrum (“massless Dirac fermions” [3, 4]) and un-
usual structural and mechanical properties [5, 6, 7, 8, 9]
(for a general review, see Refs. 10, 11, 12). Originally,
graphene sheets lying on quartz substrate have been pre-
pared and investigated but later it turned out that the
freely hanged membranes of macroscopically large sizes
can be derived [5]. The electronic transport and me-
chanical properties of these membranes are being inten-
sively studied [6, 7, 8, 9, 13, 14, 15, 16]. They demon-
strate, in particular, a much higher electron mobility, at
least, at low temperatures, than graphene sheets on a
substrate [13, 14, 16] and extraordinary mechanical stiff-
ness [8], which makes them especially interesting for ap-
plications. However, peculiarities of the freely hanged
graphene membranes are still poorly understood theo-
retically.

In this paper we demonstrate that unavoidable defor-
mations of the membranes by an applied electric field can
strongly affect their transport properties. The system we
consider is sketched in Fig. 1(a). The calculated deforma-
tion h0 and conductance G are shown in Figs. 2 and 3.
The left panel of Fig. 2 shows the maximum deforma-
tion as function of carrier density n and slack ∆L in the
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FIG. 1: (Color online). (a) Sketch of the model of a sus-
pended graphene sheet under consideration. (b) Fermi circles
positions in the Brillouin zone in the leads (left) and in the
suspended region (right).
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FIG. 2: (Color online) Left: Maximum height, h0, for a sus-
pended sheet of length l = 1µm as function of carrier density
for different slacks: ∆L = 2nm; pentagons (blue), ∆L = 0,
triangles (red), and ∆L = −2nm, diamonds (green). Right:
Effective gauge field for the same three values of slack. The
full magenta curve gives the Fermi wavevector, kF .

sheet. We define slack as the difference of the equilibrium
length of the suspended sheet and the distance between
the clamped ends. Negative ∆L implies that the sheet
is under tension (see below). The right panel of Fig. 2
gives G as function of carrier density for the same three
values of slack. In the presence of a finite deformation
parametrized by the maximum vertical displacement h0,
the conductance is reduced. We found that at not too
small carrier concentrations n, function G(n) is given by

G ≃
4e2

h

W

π

[

kF −

(

π −
1

2

)

|Ay|

]

, (1)

where W is the width of the sample, kF =
√

π|n| is the
Fermi wavevector, and Ay of dimension of inverse length
is related to the deformation [Eq. (4)]. For graphene
initially under tension [9], where h0 is nearly constant,
and low carrier concentrations, we find a nearly complete
suppression of transport. The physical mechanism of this
phenomenon can be understood as follows. The deforma-
tion shifts the Dirac points by the amount Ay [Fig. 1(b)],
which creates a mismatch between the graphene leads
and the suspended region. If this shift exceeds the di-
ameter 2kF of the Fermi circle, the electrons are fully
reflected.

Recent experiments [16] show a qualitative agreement
with our Fig. 3; however, at very low n the conductivity
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FIG. 3: (Color online) Conductance as function of carrier
density. The values of ∆L and the corresponding symbols are
the same as in Fig. 2. The full magenta line gives the ballistic
conductance in the absence of deformation. The width of the
sheet is W = 1 µm.

saturates at at a f inite value ∼ e2/h. We attribute this
to residual disorder-assisted tunneling processes.

The model. We consider a strip of graphene clamped at
two parallel edges x = ±L/2, see Fig. 1. We assume that
the width of the strip in the undeformed state is L+∆L,
where ∆L can be of either sign. The strip is suspended
above a control gate, whose electric field induces electron
concentration n in graphene and exerts on it the pressure
P = (2πe2n2)/ǫ.

The resultant height profile h(x) of the strip has a
well known analytic form [17] under the condition h0 ≡
maxh(x) ≪ L where the linear elasticity theory ap-
plies. We focus on the case where n is either compa-
rable or much larger than n0 =

√

(16/π)(ǫκ)/(e2L3) ≈
(6 × 109 cm−2)/(L/1 µm)3/2, where κ ≈ 1.1 eV is the
bending rigidity of graphene [18]. In this case the de-
formation is nearly parabolic:

h(x) ≃ h0

(

1 −
4x2

L2

)

,
L

2
− |x| ≫ L

lnu

u
. (2)

where u = (n/n0)(L/h0)
1/2 ≫ 1. The maximum defor-

mation h0 is the positive root of the cubic equation

(

h2
0 −

3

16
L∆L

)

h0 =
3π

64

e2

ǫE
(nL2)2 , (3)

where E ≈ 22 eV/Å
2

is the Young’s modulus of
graphene [8]. The values of h0 for different values of
the slack are plotted in Fig. 2.

The deformation of the strip induces perturbations of
two types acting on electrons: the scalar potential V (x)
and the effective vector potential [19, 20] A(x). We ex-
amine these potentials below, starting with A(x).

Vector potential . The aforementioned shift of the Dirac
points [Fig. 1(b)] is equivalent to the effect of a constant
vector potential A = (Ax, Ay). We use this latter formal-
ism in the following as it can be easily generalized to more
complex situations. The role of A is the largest when the
“zigzag” direction is along the y-axis. Assuming this is

the case, we obtain

Ax(x) = 0 , Ay(x) = C1ξ
β

a

t

E
= C1ξ

β

a

PL2

8Eh0

, (4)

where β = d log(γ0)/d log(a) ≈ 2 is the dimensionless
electron-phonon coupling parameter, γ0 ≈ 3 eV is the
nearest neighbor hopping, a ≈ 1.4 Å is the distance be-
tween nearest carbon atoms, ξ = ±1 is the valley index,
t ≃ PL2/(8h0) is the horizontal component of tension
per unit length at the edges, and C1 is a parameter of
order unity which depends on the relative displacements
within the unit cell, determined by the microscopic force
constants[21]. (Note that u = L

√

t/4κ .) The corre-
sponding effective magnetic field B(x) = −∂xAy consists
of two narrow spikes at the edges x = ±L/2 [22].

Transport. To compute the two-terminal conductance
G through a graphene sheet we assume perfect semi-
infinite graphene leads of the same chemical potential at
both ends of the strip. Since the perturbations depend
only on x, the ky momentum is conserved. However, the
effective magnetic field at the edges shifts the mechanical
momentum, ky → ky −Aysign(x), of electrons that enter
the strip. This leads to a nearly complete reflection of
electrons at low density where kF < Ay/2. Similar effect
has been previously examined in the context of transmis-
sion of Dirac particles through a region of homogeneous
magnetic field [23]. However, the present problem has
new qualitative features, see below.

For a constant Ay, the transmission coefficient T (ky)
can be computed analytically:

T (ky) =
k(0)2k(Ay)2

k(0)2k(Ay)2 + k2
F A2

y sin2[k(Ay)L]
, (5)

where k(q) =
√

k2
F − (ky − q)2. If k(Ay)2 < 0,

then k(Ay) is pure imaginary, so that sin2[k(Ay)L] →
− sinh2 |k(Ay)L|. In this case T (ky) is exponentially
small. The plot of T (ky) is shown in Fig. 4 using the
parametrization ky = kF sin θ for −π/2 < θ < π/2 and
n = 2 × 1011 cm−2. The transmission is indeed almost
zero for a range of incident angles θ. In addition, we see
Fabry-Pérot resonances because of the multiple scatter-
ing off the two interfaces. (Such resonances are essen-
tially absent if the field is uniform [23].)

Neglecting the contribution of edge channels, which is
permissible when the number of bulk channels kF W/π is
large, the conductance can be computed from

G =
4e2

h
W

kF
∫

−kF

dky

2π
T (ky) . (6)

This integral can be done analytically in the limit kF ≫
|Ay| and LkF ≫ 1, see Eq. 1. Using Eqs. (3)–(6), we
also computed G(n) numerically for three ∆L shown in
Fig. 3. For ∆L ≥ 0, where the tension and therefore
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FIG. 4: (Color online). Angular dependence of the transmis-
sion for h0 = 20 nm, no slack, and L = 1 µm. The carrier
density is n = 2 × 1011 cm−2. The two curves correspond to
the two inequivalent Dirac points.

|Ay| rapidly increase with n (Fig. 1), the deviations from
the ballistic formula occur at large n. In contrast, for
∆L = −2 nm, where the tension is approximately con-
stant, the largest effect of the gauge field is felt at low
concentrations, leading to a nearly complete vanishing of
G at |n| < 2.0 × 1010 cm−2.

Disorder effects. Any realistic system contains dis-
order. When weak, it does not change qualitatively
the above results for G(n) at high carrier concentration
|n| ≫ A2

y. In the opposite limit, when G is strongly
suppressed, the effect of disorder is important because it
relaxes the constraint of momentum conservation, com-
pensating for the momentum shift due to the gauge field
at the interfaces x = ±L/2.

Consider the experimentally relevant case [16] where
the elastic mean-free path l is comparable to the system
size L. Then, at 1 ≪ G/(4e2/h) ≪ kF W we have a
regime where the disorder is weak enough that its effect
on the average conductance is still negligible yet it is
strong enough to fully mix the transverse modes in the
suspended region. In this case the conductance is limited
by the two interfaces, which act as classical resistors in
series [24], G = Gi/2. Let us compute the conductance
of a single interface Gi with and without including the
effect of disorder.

If disorder near the interface is neglected, Gi is given
by the expression similar to Eq. (6) where T (ky) is now
the transmission coefficient through a single interface:
T (ky) = [4k(0)k(A)]/[(k(0)+k(A))2 +A2

y] . This formula
holds if ky-mode is propagating, ℑmk(0) = ℑmk(Ay) =
0. Otherwise, it is evanescent and T (ky) = 0. Each
evanescent mode decays exponentially either to the left
or to the right of x = 0 interface, depending on which
of ℑmk(0) and ℑmk(Ay) is nonzero. At kF < |Ay|/2 all
modes at the Fermi energy are evanescent. Therefore, if
the disorder is neglected, Gi vanishes.

Let us now include disorder-induced mixing among the
evanescent and propagating modes, which gives a cor-
rection ∆T (ky) to each T (ky). To the lowest order in
the concentration ns of scatterers, this correction can be

written as

∆T (ky) =

Ay+kF
∫

Ay−kF

dk′

y

2π

∞
∫

−∞

dxnsδT (ky, k′

y, x) , (7)

where δT (ky, k
′

y, x) is the off-diagonal transmission co-
efficient due to a single scatterer at position r =
(x, y). Function ∆T (ky) has the dimension of length,
similar to the transport cross-section Λs = 1/(nsl).
On physical grounds, we expect δT (ky, k

′

y, x) ∼
(Λs/kF ) exp (−2|k(Ay)x|). Here the exponential repre-
sents the probability of the evanescent wave to reach the
scatterer and the prefactor provides the correct units and
scaling with disorder strength. The dominant contribu-
tion to ∆T (ky) comes from the scatterers located in the
strip |x| . 1/|k(Ay)|. Integrating over x, ky, and k′

y, we
finally get

G =
Gi

2
=

4e2

h

kF W

π

C2

2|Ay|l
=

(

e2

h

)2
4C2Wn

|Ay |σ(n)
, (8)

where C2 is a numerical coefficient and σ(n) is the
conductivity of a sample with size L ≫ l. A formal
derivation based on the Green’s function formalism yields
C2 = 4. For estimate, we can take n = 109 cm−2,
σ ∼ 4e2/h, W = 1 µm, and Ay = 2 × 105 cm−1. We
then find G ∼ 2e2/h, i.e., an appreciably large value.

Scalar potential . The deformation of the graphene
strip also creates a scalar potential V (x) in the system.
Our estimates below indicate that it is relatively small,
so that its presence is not expected to change the results
shown in Figs. 3 and 4 in a major way. We will discuss
it briefly, for completeness.

The bare potential induced by the deformation is:

Vext(x) = −
Ph(x)

en
+ V0 (uxx + uyy)

= −
Ph(x)

en
+ θ

(

L

2
− |x|

)

tV0

E
,

(9)

where the first term is the change in electrostatic poten-
tial due to the change in distance to the gate, the second
term gives the deformation potential induced by a local
compression [21, 25] uxx + uyy, and V0 ≈ 10 eV.

Within the linear screening theory, the Fourier trans-
form Ṽ of V is given by Ṽ (q) = Ṽext(q)/ε(q), where ε(q)
is the dielectric function. For reasonable carrier concen-
trations, the potential in Eq. (9) is smooth over distances
∼ k−1

F ≪ L. We can use the Thomas-Fermi (TF) ap-
proximation, ε(q) = 1 + ks/ |q|, where ks = 4αkF is the
inverse TF screening length and α = e2/ǫ~v ∼ 1 is the
dimensionless strength of the Coulomb interaction. The
screened potential can be computed analytically in terms
of special functions. In the limit ksL ≫ 1 and at dis-
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tances greater than k−1
s from the boundaries it reads:

eV (x) ≃
1

2π

PV0

Eh0ks

L3

L2 − 4x2

−
8

π

Ph0

nksL

(

1 +
x

L
ln

∣

∣

∣

∣

L − 2x

L + 2x

∣

∣

∣

∣

)

.

(10)

The potential at the edge is given by

eV

(

L

2
± 0

)

= ±
PV0L

2

16Eh0

+
4

π

Ph0

nksL
[C3 − ln(ksL)] ,

(11)
where C3 ∼ 1. Thus, the divergences in Eq. (10) are cut
off at the distance of the order of the screening length
1/ks from the edge, as expected.

For n ∼ 3 × 1011 cm−2, the deformation and the elec-
trostatic potentials at the edges are comparable in mag-
nitude and together amount to about 10% of the Fermi
energy. Although this is not a negligible amount, it is still
numerically small, so that the linear-response screening
approach is justified.

Experimental implications and future directions. In
this paper we focused on a simplest geometry of a sus-
pended graphene strip (Fig. 1) for which the calculation
of the transport properties can be done semi-analytically.
We have found that reasonable values of the tension,
∆L/L ∼ 0.2% in a suspended graphene strip can lead
to the almost total reflection for a significant range of
incoming momenta, which causes a downward shift of
the two-terminal conductance compared to the ballistic
limit, Eq. (1). Residual disorder can partially compen-
sate for this shift, which may be the case in current ex-
periments [13, 14, 16]. Note however, that our theory
cannot be directly compared with experiments, as the
sample geometry and therefore the configuration of the
gauge field can be more complicated than what we have
assumed here.

There are a number of possible directions for future
study. One interesting problem is how the deformation
would affect the quantum Hall effect (QHE) in the sus-
pended graphene. Below we offer a preliminary discus-
sion of this question.

For the model considered, the effects of the deforma-
tion are restricted to the x = ±L/2 interfaces. The Lan-
dau levels near such lines will be modified (except for the
N = 0 one, which is topologically protected [26, 27]).
Quasiclassicaly, the reflection at the interfaces creates
skipping orbits, which propagate parallel to the y-axis
but in opposite directions on the two sides of each in-
terface. This could lead to backscattering of the edge
currents and modification of the QHE. The effect is the
strongest when kF . |Ay|. For low-lying Landau levels,
where kF ∼ 1/lB, an estimate of the external magnetic
field B∗ below which the QHE is affected can be derived
from the condition lB(B∗) ∼ |Ay|

−1. For ∆L = −2nm,
and Ay ∼ 2 × 105 cm−1, it yields B∗ ∼ 0.7 T.

In a more realistic geometry, a small fictitious mag-
netic field will also exist inside the suspended region. Its
magnitude is of the order of 0.05 T for the same ∆L and
L. Landau levels mixing in the bulk occurs when the
external field is comparable or smaller than this value.
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