We present a study on swelling-induced circumferential buckling of tubular
shaped gels. Inhomogeneous stress develops as gel swells under mechanical
constraints, which gives rise to spontaneous buckling instability without
external force. Full control over the post-buckling pattern is experimentally
demonstrated. A simple analytical model is developed using elastic energy to
predict stability and post-buckling patterns upon swelling. Analysis reveals
that height to diameter ratio is the most critical design parameter to
determine buckling pattern, which agrees well with experimental and numerical
results.Comment: 32 pages, 7 figure