We study the mechanism of wrinkling of suspended graphene, by means of
atomistic simulations. We argue that the structural instability under edge
compression is the essential physical reason for the formation of periodic
ripples in graphene. The ripple wavelength and out-of-plane amplitude are found
to obey 1/4-power scaling laws with respect to edge compression. Our results
also show that parallel displacement of the clamped boundaries can induce
periodic ripples, with oscillation amplitude roughly proportional to the 1/4
power of edge displacement. The results are fundamental to graphene's
applications in electronics.Comment: 5 Figure