6 research outputs found

    Live-Cell Chromosome Dynamics and Outcome of X Chromosome Pairing Events during ES Cell Differentiation

    Get PDF
    SummaryRandom X inactivation represents a paradigm for monoallelic gene regulation during early ES cell differentiation. In mice, the choice of X chromosome to inactivate in XX cells is ensured by monoallelic regulation of Xist RNA via its antisense transcription unit Tsix/Xite. Homologous pairing events have been proposed to underlie asymmetric Tsix expression, but direct evidence has been lacking owing to their dynamic and transient nature. Here we investigate the live-cell dynamics and outcome of Tsix pairing in differentiating mouse ES cells. We find an overall increase in genome dynamics including the Xics during early differentiation. During pairing, however, Xic loci show markedly reduced movements. Upon separation, Tsix expression becomes transiently monoallelic, providing a window of opportunity for monoallelic Xist upregulation. Our findings reveal the spatiotemporal choreography of the X chromosomes during early differentiation and indicate a direct role for pairing in facilitating symmetry-breaking and monoallelic regulation of Xist during random X inactivation

    Analyse du role de l’organisation nucleaire dans l’inactivation du chromosome X

    No full text
    Chez les mammifĂšres femelles, le processus d’inactivation du chromosome X (XCI) assure la compensation de dose entre les deux sexes. Chez la souris, l’inactivation du X est Ă©tablie de maniĂšre alĂ©atoire dans l’épiblaste au stade blastocyste et peut ĂȘtre rĂ©capitulĂ©e in vitro dans les cellules souches embryonnaires. L’ARN non-codant Xist, exprimĂ© Ă  partir du centre d’inactivation du X (Xic), est le rĂ©gulateur principal de ce processus. Il dĂ©core en cis le chromosome choisi pour ĂȘtre inactivĂ© et initie la rĂ©pression de ses gĂšnes. Ainsi, de maniĂšre remarquable, les deux chromosomes X sont traitĂ©s diffĂ©remment pendant l’initiation de la XCI malgrĂ© leur homologie de sĂ©quence et leur localisation au sein d’un mĂȘme noyau. De maniĂšre remarquable, ce processus implique le traitement diffĂ©rentiel de deux chromosomes homologues au sein d’un mĂȘme noyau, avec des changements d’environnements nuclĂ©aires et chromatiniens entre le X actif et le X inactif. Il a Ă©tĂ© proposĂ© que la localisation nuclĂ©aire pourrait jouer un rĂŽle important dans l’initiation de l’expression monoallĂ©lique des gĂšnes, non seulement pour l’initiation de la XCI mais aussi pour des processus tels que l’exclusion allĂ©lique dans les cellules lymphoides. Par exemple, l’association de loci avec des compartiments hĂ©tĂ©rochromatiques nuclĂ©aires et l’association en trans de loci homologues pourraient ĂȘtre impliquĂ©es dans la rĂ©gulation des gĂšnes monoallĂ©liques. Ainsi, j’ai utilisĂ© le systĂšme bactĂ©rien TetR/TetO afin d’analyser le rĂŽle de l’organisation nuclĂ©aire du chromosome X et du Xic dans l’initiation de la XCI. J’ai pu montrer que si le recrutement des protĂ©ines de fusion TetR-LaminB1 ou -Cbx5 au niveau de la cassette TetO insĂ©rĂ©e dans le Xic permet la rĂ©pression des gĂšnes Ă  proximitĂ©, cet Ă©vĂšnement n’est pas toujours accompagnĂ© d’une relocalisation nuclĂ©aire. De plus, l’association forcĂ©e du Xic avec la pĂ©riphĂ©rie nuclĂ©aire (TetR-LaminB1) n’a pas d’influence sur le choix du chromosome X Ă  inactiver. Enfin, si la relocalisation des deux Xic Ă  la pĂ©riphĂ©rie nuclĂ©aire induit une rĂ©duction des Ă©vĂšnements d’association en trans entre les deux loci, elle n’a pas d’effet sur l’initiation de l’inactivation. En rĂ©sumĂ©, ces rĂ©sultats suggĂšrent que l’organisation nuclĂ©aire du chromosome X et du Xic et l’association des Xic en trans ne sont pas des facteurs dĂ©terministes pour le choix et l’initiation de la XCI, mais pourraient ĂȘtre le rĂ©sultat des changements d’expression des gĂšnes liĂ©s Ă  l’X au cours de la diffĂ©renciation des cellules souches ainsi que de l’augmentation de l’expression de Xist.Enfin, j’ai Ă©galement analysĂ© le rĂŽle de la protĂ©ine CTCF, qui a Ă©tĂ© proposĂ©e pour ĂȘtre importante dans l’organisation structurale du gĂ©nome, dans le contexte du Xic et de l’initiation de l’inactivation. Ainsi, le recrutement de CTCF au niveau de cassette TetO insĂ©rĂ©e dans le Xic induit localement une rĂ©duction mineure des interactions en cis et la rĂ©pression des gĂšnes du Xic, Ă  l’exception de Xist dont l’expression est augmentĂ©e. Pour autant, la prĂ©sence ectopique de CTCF n’a pas d’incidence majeure sur l’organisation gĂ©nĂ©rale du Xic.X-chromosome inactivation (XCI) ensures dosage compensation in female mammals. Random XCI is established in the epiblast of female mouse embryos and can be recapitulated in vitro in differentiating embryonic stem cells (ESCs). The major regulator of XCI is the long non-coding RNA Xist, which is expressed from the X-inactivation center (Xic), covers the chromosome in cis and initiates gene silencing. During XCI, the two X chromosomes are treated very differently, despite their homology and the fact that they reside in the same nucleus. Nuclear localization has been hypothesized to play a role in monoallelic gene regulation, not only during XCI but also in other contexts. For example, association with heterochromatin and homologous trans interactions (“pairing”) have been implicated in the establishment of monoallelic gene expression in lymphoid cells and transient pairing has been suggested to participate in symmetry breaking during random XCI. Using the bacterial tetO/tetR system to alter the subnuclear localization and environment of one or both Xics, we have tested the function of subnuclear localization and trans interactions between the Xic loci during initiation of XCI. Using stable expression and reversible binding of TetR fusion proteins (e.g. LaminB1, Cbx5) we show that binding of these proteins can induce local gene repression and chromatin changes, although this is not always associated with subnuclear relocalization. We further show that the forced association of the Xic with the nuclear envelope, does not impact on the choice-making process during XCI. In particular, tethering both Xics to the nuclear lamina during early ESC differentiation resulted in a substantial reduction of homologous pairing events, but had no obvious impact on the onset of random, monoallelic Xist expression. Taken together, our results suggest that nuclear localization and trans interactions of the Xic may be downstream events rather than causal in the regulation of the XCI process.Furthermore, we recruited CTCF, a protein suggested to be involved in structural organization of the genome, to the Xic using the tetO/tetR system. Upon binding of CTCF the overall structure of the Xic remained unaltered though few cis interactions appeared to be weakened, which was accompanied by gene repression in the Xic. Surprisingly, the only upregulated gene in the Xic was Xist in ESCs and during differentiation, which demonstrates that the induced minor changes of cis interactions might impact on gene regulation in the Xic

    RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage

    No full text
    Dnmt2 proteins are the most conserved members of the DNA methyltransferase enzyme family, but their substrate specificity and biological functions have been a subject of controversy. We show here that, in addition to tRNAAsp-GTC, tRNAVal-AAC and tRNAGly-GCC are also methylated by Dnmt2. Drosophila Dnmt2 mutants showed reduced viability under stress conditions, and Dnmt2 relocalized to stress granules following heat shock. Strikingly, stress-induced cleavage of tRNAs was Dnmt2-dependent, and Dnmt2-mediated methylation protected tRNAs against ribonuclease cleavage. These results uncover a novel biological function of Dnmt2-mediated tRNA methylation, and suggest a role for Dnmt2 enzymes during the biogenesis of tRNA-derived small RNAs
    corecore