337 research outputs found

    Wave-driven dynamo action in spherical magnetohydrodynamic systems

    Get PDF
    Hydrodynamic and magnetohydrodynamic numerical studies of a mechanically forced two-vortex flow inside a sphere are reported. The simulations are performed in the intermediate regime between the laminar flow and developed turbulence where a hydrodynamic instability is found to generate internal waves with a characteristic m=2 zonal wave number. It is shown that this time-periodic flow acts as a dynamo although snapshots of the flow as well as the mean flow are not dynamos. The magnetic fields' growth rate exhibits resonance effects depending on the wave frequency. Furthermore, a cyclic self-killing and self-recovering dynamo based on the relative alignment of the velocity and magnetic fields is presented. The phenomena are explained in terms of a mixing of non-orthogonal eigenstates of the time dependent linear operator of the magnetic induction equation. The potential relevance of this mechanism to dynamo experiments is discussed.Comment: 11 pages, 13 figure

    Some Unusual Properties of Turbulent Convection and Dynamos in Rotating Spherical Shells

    Full text link
    The dynamics of convecting fluids in rotating spherical shells is governed at Prandtl numbers of the order unity by the interaction between differential rotation and roll-like convection eddies. While the differential rotation is driven by the Reynolds stresses of the eddies, its shearing action inhibits convection and causes phenomena such as localized convection and turbulent relaxation oscillations. The response of the system is enriched in the case of dynamo action. Lorentz forces may brake either entirely or partially the geostrophic differential rotation and give rise to two rather different dynamo states. Bistability of turbulent dynamos exists for magnetic Prandtl numbers of the order unity. While the ratios between mean magnetic and kinetic energies differ by a factor of 5 or more for the two dynamo states, the mean convective heat transports are nearly the same. They are much larger than in the absence of a magnetic field.Comment: To appear in Procs. IUTAM Symposium on Turbulence in the Atmosphere and Oceans, 08-7 = GA.06-0

    Towards an experimental von Karman dynamo: numerical studies for an optimized design

    Get PDF
    Numerical studies of a kinematic dynamo based on von Karman type flows between two counterrotating disks in a finite cylinder are reported. The flow has been optimized using a water model experiment, varying the driving impellers configuration. A solution leading to dynamo action for the mean flow has been found. This solution may be achieved in VKS2, the new sodium experiment to be performed in Cadarache, France. The optimization process is described and discussed, then the effects of adding a stationary conducting layer around the flow on the threshold, on the shape of the neutral mode and on the magnetic energy balance are studied. Finally, the possible processes involved into kinematic dynamo action in a von Karman flow are reviewed and discussed. Among the possible processes we highlight the joint effect of the boundary-layer radial velocity shear and of the Ohmic dissipation localized at the flow/outer-shell boundary

    Dynamo action at low magnetic Prandtl numbers: mean flow vs. fully turbulent motion

    Get PDF
    We compute numerically the threshold for dynamo action in Taylor-Green swirling flows. Kinematic calculations, for which the flow field is fixed to its time averaged profile, are compared to dynamical runs for which both the Navier-Stokes and the induction equations are jointly solved. The kinematic instability is found to have two branches, for all explored Reynolds numbers. The dynamical dynamo threshold follows these branches: at low Reynolds number it lies within the low branch while at high kinetic Reynolds number it is close to the high branch.Comment: 4 pages, 4 figure

    Reduction of velocity fluctuations in a turbulent flow of gallium by an external magnetic field

    Full text link
    The magnetic field of planets or stars is generated by the motion of a conducting fluid through a dynamo instability. The saturation of the magnetic field occurs through the reaction of the Lorentz force on the flow. In relation to this phenomenon, we study the effect of a magnetic field on a turbulent flow of liquid Gallium. The measurement of electric potential differences provides a signal related to the local velocity fluctuations. We observe a reduction of velocity fluctuations at all frequencies in the spectrum when the magnetic field is increased.Comment: accepted for Physical Review

    Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds

    Get PDF
    The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools

    Stable water isotopologue ratios in fog and cloud droplets of liquid clouds are not size-dependent

    Get PDF
    In this work, we present the first observations of stable water isotopologue ratios in cloud droplets of different sizes collected simultaneously. We address the question whether the isotope ratio of droplets in a liquid cloud varies as a function of droplet size. Samples were collected from a ground intercepted cloud (= fog) during the Hill Cap Cloud Thuringia 2010 campaign (HCCT-2010) using a three-stage Caltech Active Strand Cloud water Collector (CASCC). An instrument test revealed that no artificial isotopic fractionation occurs during sample collection with the CASCC. Furthermore, we could experimentally confirm the hypothesis that the δ values of cloud droplets of the relevant droplet sizes (μm-range) were not significantly different and thus can be assumed to be in isotopic equilibrium immediately with the surrounding water vapor. However, during the dissolution period of the cloud, when the supersaturation inside the cloud decreased and the cloud began to clear, differences in isotope ratios of the different droplet sizes tended to be larger. This is likely to result from the cloud's heterogeneity, implying that larger and smaller cloud droplets have been collected at different moments in time, delivering isotope ratios from different collection times

    Patterns of convection in rotating spherical shells

    Full text link
    Patterns of convection in internally heated, self-gravitating rotating spherical fluid shells are investigated through numerical simulations. While turbulent states are of primary interest in planetary and stellar applications the present paper emphasizes more regular dynamical features at Rayleigh numbers not far above threshold which are similar to those which might be observed in laboratory or space experiments. Amplitude vacillations and spatial modulations of convection columns are common features at moderate and large Prandtl numbers. In the low Prandtl number regime equatorially attached convection evolves differently with increasing Rayleigh number and exhibits an early transition into a chaotic state. Relationships of the dynamical features to coherent structures in fully turbulent convection states are emphasized

    Asymptotic and numerical solutions of the initial value problem in rotating planetary fluid cores

    Get PDF
    Copyright © 2010 The Royal Astronomical SocietyAn initial state of fluid motion in planetary cores or atmospheres, excited, for example, by the giant impact of an asteroid or an earthquake and then damped by viscous dissipation, decays towards the state of rigid-body rotation. The process of how the initial state approaches the final state, the initial value problem, is investigated both analytically and numerically for rotating fluid spheres. We derive an explicit asymptotic expression for the time-dependent solution of the initial value problem valid for an asymptotically small Ekman number E. We also perform a fully numerical analysis to simulate time-dependent solutions of the initial value problem for a small value of E. Comparison between the asymptotic solution and the corresponding numerical simulation shows a satisfactory quantitative agreement. For the purpose of illustrating why spherical geometry represents an intricate and exceptional case, we also briefly discuss the initial value problem in a rotating fluid channel. Geophysical and planetary physical implications of the result are also discussed
    • …
    corecore