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Abstract. In this work, we present the first observations of
stable water isotopologue ratios in cloud droplets of differ-
ent sizes collected simultaneously. We address the question
whether the isotope ratio of droplets in a liquid cloud varies
as a function of droplet size. Samples were collected from a
ground intercepted cloud (= fog) during the Hill Cap Cloud
Thuringia 2010 campaign (HCCT-2010) using a three-stage
Caltech Active Strand Cloud water Collector (CASCC). An
instrument test revealed that no artificial isotopic fractiona-
tion occurs during sample collection with the CASCC. Fur-
thermore, we could experimentally confirm the hypothesis
that theδ values of cloud droplets of the relevant droplet sizes
(µm-range) were not significantly different and thus can be
assumed to be in isotopic equilibrium immediately with the
surrounding water vapor. However, during the dissolution pe-
riod of the cloud, when the supersaturation inside the cloud
decreased and the cloud began to clear, differences in isotope
ratios of the different droplet sizes tended to be larger. This
is likely to result from the cloud’s heterogeneity, implying
that larger and smaller cloud droplets have been collected at
different moments in time, delivering isotope ratios from dif-
ferent collection times.

1 Introduction

In order to use stable water isotopologues (1H2
16O,

1H2H16O, and1H2
18O) as a tool to assess paleoclimatical

(e.g. Dansgaard et al., 1993; Petit et al., 1999), ecological
(e.g.Yakir and Sternberg, 2000; Farquhar et al., 2007) and
hydrological questions (e.g.Dansgaard, 1964), a quantitative
understanding of processes involving stable water isotopo-
logues in the hydrosphere is needed. Important mechanisms
herein are cloud and precipitation formation (Jouzel, 1986).
Cloud modeling is one way to gain insights into these pro-
cesses (Jouzel, 1986). In recent years, modeling efforts fo-
cused on the explanation of observed trends of isotope ratios
in precipitation, both on a local and a global scale (Lee and
Fung, 2007; Risi et al., 2008), aiming for a better understand-
ing of the “amount effect”. This effect describes the on-going
depletion of precipitation water in heavy isotopologues with
increasing rain intensity.

An important assumption used in cloud models is that the
cloud droplets are in isotopic equilibrium with the surround-
ing water vapor, leading to cloud droplets which do not dif-
fer in isotope ratios for different droplet sizes (Jouzel, 1986).
This assumption was first presented byBolin (1958) who car-
ried out a theoretical analysis of tritium isotope exchange be-
tween single freely falling rain droplets and their environ-
ment, based on the laboratory work byKinzer and Gunn
(1951). Additionally, laboratory studies of the isotopic ex-
change rate of single falling droplets (Friedman et al., 1962;
Booker, 1964; Stewart, 1975) further strengthened Bolin’s
work. Based on a theoretical framework,Jouzel et al.(1975)
demonstrated that a cloud droplet with radius less than 30 µm
could be considered to be in isotopic equilibrium with water
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vapor independent of the cloud conditions. However, to our
knowledge, no measurements in clouds or fog have been car-
ried out so far to confirm that the results from single falling
droplets can be applied to an ensemble of cloud droplets with
multiple and more complex interactions, and that droplets do
not differ in isotope ratio for different sizes. Due to differ-
ent inertia, droplets of different sizes are affected differently
by cloud dynamics: larger droplets settle faster, while smaller
droplets might be transported higher in the cloud (Gedzelman
and Arnold, 1994). Thus, different droplet sizes could carry
isotopic information from different locations in the cloud.
Moreover, as the equilibrium vapor pressure increases with
increasing curvatures, larger droplets slowly grow at the ex-
pense of smaller ones and might therefore have longer life
times, which could additionally influence the isotope ratio of
the droplets.

In this study, we present the first experimental evidence
that there is no difference in isotope ratios for different
droplet sizes in hill cap clouds dominated by liquid phase
microphysics. Theδ values of the cloud droplets of three dif-
ferent relevant size classes did not differ significantly.

2 Materials and methods

2.1 Measurement site and HCCT-2010 field experiment

Cloud data were gathered during the Hill Cap Cloud
Thuringia 2010 (HCCT-2010) field campaign, which took
place close to the summit of Schmücke (50◦39′19′′ N,
10◦46′15′′ E, 937 m a.s.l., Germany) in September and Oc-
tober 2010. In total, cloud samples from 13 different non-
precipitating cloud events with temperatures>0◦C (pre-
sented in more detail inSpiegel et al., 2012) were collected
using a three-stage Caltech Active Strand Cloud water Col-
lector (CASCC, Sect.2.2).

The events lasted between 3 and 15 h, mostly at night time,
resulting in 1 to 8 cloud samples per event, depending on the
collection time per sample (1 to 3 h). More detailed informa-
tion can be found in the raw data set (http://doi.pangaea.de/
10.1594/PANGAEA.788631). Each cloud sample consisted
of the three vials from the three stages of the CASCC. For
the discussion of the temporal evolution of the isotope ratio
during the cloud events as well as for details and the general
interpretation we refer toSpiegel et al.(2012), and hence use
the same numbering as inSpiegel et al.(2012).

From a meteorological point of view the cloud that was
probed at Schm̈ucke should be called fog – as fog is a cloud
that touches the ground (Pruppacher and Klett, 1997). How-
ever, from a process based point of view, the microphysi-
cal processes within the cloud do not change at the moment
when an advected cloud touches the ground. We therefore
use the terms fog and cloud interchangeably throughout this
work. In addition to the collection of cloud water samples,
other cloud properties were monitored as well in the frame-

Table 1. F - andp-values for a two way ANOVA (factors: Time and Size) for the measuredδ2H andδ18O

values for the six DI-samples and for each cloud event separately comprising more than one cloud sample.

The factor Time is represented by the sample number within an event and was used as a categorical variable

in the ANOVA. Bold indicates that the null hypothesis needs to be rejected at a significance level α= 0.05

(H0 (events): Cloud water from all vials have the sameδ values; H0 (DI-samples): Water from all vials have

the sameδ values as the DI water). For events 1, 5, 7 and 12, the ANOVA was only performed forδ values

from stage 1 and 3, as at least oneδ value for the stage 2 was missing. As there were 18 independent tests

necessary for the cloud events, we applied the Bonferroni correction(Legendre and Legendre, 1998) resulting

in an adjusted significant levelαadj = 0.05/18 = 2.7× 10−3 against which thep-values were compared.

δ2H δ18O

Size Time Size Time

Event F -value p-value F -value p-value F -value p-value F-value p-value

DI-samples 0.5 0.6297 1.6 0.2508 0.1 0.9047 2.4 0.1158

1 0.7 0.4255 67.1 <10−5 7.1 0.0373 81.0 <10−5

3 9.0 0.1001 161.4 0.0061 2.6 0.2792 68.3 0.0143

5 4.5 0.2802 0.7 0.5677 33.4 0.1091 2.9 0.3403

6 0.1 0.8980 3.7 0.0811 2.4 0.1739 11.9 0.0062

7 3.8 0.1914 1360.6 0.0007 98.3 0.0100 25205.0 <10−5

9 0.8 0.4943 197.5 <10−5 0.8 0.4703 69.0 <10−5

10 4.4 0.0338 81.07 <10−5 1.0 0.3817 13.3 <10−5

11 0.1 0.8782 15.0 0.0139 0.2 0.8536 6.5 0.0550

12 0.6 0.52 478.76 0.0021 2.3 0.2721 1348.2 0.0007

Stage 1:       Stage 2:         Stage 3:

22 µm          16 µm            4 µm

Measurement tower  three-stage CASCC

Inlet

Fan
Height: 
20 m Polyethylene collection bottles

Fig. 1. Pictures of the measurement tower at Schmücke (50◦39′ N, 10◦46′ E, 937 m a.s.l, Germany) and of the

three-stage Caltech Active Strand Cloudwater Collector (CASCC, as described in Sect. 2.2) mounted on its top.

The figure includes the 50 % cut-off sizes for cloud droplet diameters collected at the different stages: stage 1

collects droplets larger than≈22 µm, stage 2 droplets from 16 to 22 µm and stage 3 from 16 to 4 µm.
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Fig. 1. Pictures of the measurement tower at Schmücke
(50◦39′19′′ N, 10◦46′15′′ E, 937 m a.s.l, Germany) and of the three-
stage Caltech Active Strand Cloudwater Collector (CASCC, as de-
scribed in Sect.2.2) mounted on its top. The figure includes the
50 % cut-off sizes for cloud droplet diameters collected at the dif-
ferent stages: stage 1 collects droplets larger than≈22 µm, stage 2
droplets from 16 to 22 µm and stage 3 from 16 to 4 µm.

work of the HCCT-2010 campaign. In this work, we use the
liquid water content (LWC) and the effective radius (Reff) as
measures for the microphysical state of the cloud. LWC is the
sum of the volumes of cloud droplets per unit air volume, and
Reff is defined as the radius yielding the same volume to sur-
face ratio as the ambient cloud droplet size distribution. LWC
and Reff were measured with a Particulate Volume Moni-
tor (PVM-100, Gerber Scientific, USA) which determines
the LWC via light scattering by the present droplets (Ger-
ber, 1991; Arends et al., 1994). As the total surface of the
droplets is also measured by the PVM-100, theReff (which
is the LWC divided by the total surface of the cloud droplets)
can be retrieved.

2.2 Collection of cloud water samples

In order to obtain size resolved cloud water samples a three-
stage CASCC was used, mounted on a tower 20 m above
ground (see Fig.1). The three-stage CASCC is a modified
version of the size-fractionating CASCC designed for the
collection of cloud droplets in two size fractions (Demoz
et al., 1996). The working principle is as follows. Cloud
droplets are drawn by a fan through a duct, and are collected
by means of impaction. For increasing particle size their in-
ertia decreases the ability to follow the gas stream line. By
introducing obstacles into the flow, droplets of a certain size
– corresponding to the obstacle morphology – can be iner-
tially collected from the air flow (Demoz et al., 1996). In
the three-stage CASCC, stages one to three consist of banks
of Teflon rods of three different sizes which are used as im-
paction obstacles. The rods are inclined, allowing the col-
lected fog water to flow into a Teflon sample trough (one per
stage) then through a Teflon tube into a closed polyethylene
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collection bottle (one per stage). The larger the diameter of
the rods, the larger the collected droplets are at the particular
stage.

We ran the CASCC with a volume flow of 19 m3 min−1.
Based on modeling results presented byRaja et al.(2008),
the expected 50 % size cuts for stage one, two and three were
approximately 22, 16 and 4 µm, respectively. The term 50 %
size cut corresponds to the droplet size at which droplets are
collected with a 50 % efficiency; larger droplets are collected
with a higher and smaller droplets with a smaller efficiency.
Consequently, droplets collected on adjacent stages overlap
in size and thus measured composition differences are con-
servative estimates of actual differences in composition ver-
sus droplet size. The size of the largest droplets capable of
entering the CASCC and being collected in the first stage de-
pends on the ambient wind conditions and is estimated to be
in the range of 100 µm, well above the volume mode of typi-
cal cloud droplet size distributions. When rain was expected,
we deployed the collector with a downward facing inlet to
inhibit raindrops entering the CASCC.

Sampling times varied between 1 to 3 h per cloud sample
depending on the cloud conditions. Then the polyethylene
bottles were detached from the sampler and the cloud water
for isotope ratio analysis was immediately filled into glass
vials (1.5 ml) that were closed to inhibit additional evapo-
ration which might change the isotope ratio. Additionally,
during the campaign, six test samples for isotopic fraction-
ation were collected (later on referred to as DI-samples),
by spraying deionized water (DI; with knownδ value) into
the cleaned sampler using a commercially available spray-
ing bottle. The procedure lasted around 30 min until each of
the sampling bottles was filled with approximately 250 ml.
To ensure saturated conditions inside the CASCC during the
collection of these samples, the fan was turned off. Different
CASCC versions have frequently been used for the collec-
tion of cloud water for chemical analysis (e.g.Moore et al.,
2004a,b; Collett Jr. et al., 2008; Kaul et al., 2011). One-stage
CASCCs have already been used for isotope ratio analysis
(Schmid et al., 2010) and MiniCASCCs have been recom-
mended as an appropriate tool for sample collection for iso-
tope ratio analysis (Michna et al., 2007; Scholl et al., 2011).
As cloudy air is slightly supersaturated, we expect equilib-
rium isotopic fractionation to dominate. The saturated con-
ditions persist within the CASCC and we therefore assume
that no additional isotopic fractionation occurs during sam-
pling. Consequently, the cloud water within the collection
bottle represents the averageδ value of cloud droplets for
the collection time of each stage.

2.3 Stable water isotopologue analyses

Each cloud sample consisted of three vials each from one
stage of the CASCC. The cloud water was analysed forδ2H
andδ18O values using the high-temperature carbon reduction
method by coupling a high-temperature elemental analyser

(TC/EA; Finnigan MAT, Bremen, Germany) to a DeltaplusXP
isotope ratio mass spectrometer (IRMS) via a ConFlo III in-
terface (both Finnigan MAT). The measurement set-up of the
carbon reduction tube followed the “MPI-BGC method” (see
Gehre et al., 2004, for details). Hydrogen and oxygen ratios
Rsample(2H/1H and18O/16O) were expressed as 103

× δ2H
and 103 × δ18O (in this text we use the ‰ sign behind the
numbers in order to improve readability) in relation to the
Vienna Standard Mean Ocean Water (RV-SMOW) normalized
such that the SLAP (= Standard Light Antarctic Precipita-
tion) reference water was−55.5 ‰ for δ18O and−428 ‰
for δ2H (Coplen, 1988, 2011):

δ =
Rsample

RV-SMOW
− 1. (1)

The precision of this measurement was assessed by measur-
ing a quality control lab standard water (WP-0503-Z0010B,
once in an analytical measurement sequence which com-
prises 60 samples), resulting in an uncertainty of 0.3δ units
and 0.04δ units (peak-jump) over all measurements forδ2H
andδ18O, respectively. Each vial was measured three times.
Reportedδ values are the mean values of these three mea-
surements including standard error.

2.4 Isotopic equilibration time of a motionless droplet

In this section, we present the simplified model for a motion-
less droplet in order to deduce a theoretical estimate for the
isotopic equilibration time of a cloud droplet. In contrast to
earlier studies treating mostly larger rain droplets (e.g.Fried-
man et al., 1962; Jouzel, 1986; Lee and Fung, 2007), we
chose the model of the motionless droplet, as settling veloc-
ities of cloud droplets are small (from 3.5× 10−5 m s−1 to
0.07 m s−1 for droplets of 1 to 50 µm in diameter according
to Seinfeld and Pandis(2006)) and thus ventilation effects
that affect the mass transfer can be ignored. Due to the high
diffusion coefficients within water, individual rain and cloud
droplets can be considered to be isotopically homogeneous
(Jouzel, 1986). Cloud droplets grow and shrink via the ex-
change of mass with the surrounding (saturated) vapor by
diffusion in air. Considering a motionless cloud droplet the
rate of change of droplet mass is given byPruppacher and
Klett (1997):

∂mi

∂t
= 4π r Di

(
ρi,r − ρi,∞

)
, (2)

where mi is the mass of the isotopologue in a cloud
droplet with radiusr and withi standing either for1H2

16O,
1H2H16O, and1H2

18O, respectively.Di are the diffusivities
for the different isotopologues (for this study we took dif-
fusivity values fromCappa et al., 2003), andρi,r andρi,∞

are the vapor densities of the isotopologuesi at the droplet
surface (r) and the surrounding air (∞), respectively. Equa-
tion (2) is valid for droplets larger than the mean free path
λ of air molecules which is 0.0651 µm at 1 atm and 298 K
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according toSeinfeld and Pandis(2006). Non-continuum ef-
fects of very small cloud droplets are not considered, as the
contribution of these cloud droplets to the collected cloud
water is small due to their small volume. The equilibrium
isotopic fractionation coefficientαk (here we use equations
presented byCriss(1999), to calculateαk, with k 1H2H16O,
and 1H2

18O) for the phase change from liquid to vapor is
defined as:

αk =
Rc,k

Rv,k

=

mk

m16
ρk

ρ16

, (3)

with Rc,k denoting the corresponding isotope ratio in the con-
densed phase andRv,k being the isotope ratio in the vapor
phase for the isotopologuek. Using Eq. (3), the ideal gas
equation (ρ16 =

ew

Rvw T
), andm16 = 4/3r3π , the solution for

Eq. (2) is:

meq,k − mk(t) =
(
meq,k − mk(0)

)
exp(−t/τk). (4)

wheremk(t) and mk(0) are the mass of isotopologuek in
the droplet at the timet andt = 0, respectively, andmeq,k is
the mass of isotopologuek in the droplet when the droplet is
in isotopic equilibrium with the surrounding vapor.τk is the
e-folding time, which is the time interval in whichmeq,k −

mk(t) decreased by a factore in comparison to the initial
differencemeq,k − mk(0):

τk =
αk r2ρl Rwv T

3Dk ew

, (5)

whereRwv = 461.5 J kg−1 K−1 is the gas constant for water
vapor andew is the saturation vapor pressure of water vapor
at temperatureT in (K). Using thee-folding timeτk (Eq.5),
the time required to reach 99 %(t99 = 4.5× τk) of isotopic
equilibrium with the surrounding air is reported in the subse-
quent section.

3 Results and discussion

3.1 Equilibration times for droplet sizes in fog and
liquid clouds

For temperature and air pressure conditions found during
HCCT-2010, the isotopic equilibration timet99 is less than
30 s for all relevant droplet sizes in fog and smallest for
the smallest droplet diameters that were sampled (Fig.2).
The calculated value oft99 decreased slightly with in-
creasing temperature and was smaller for1H2

18O than for
1H2H16O (asα1H2H16O > α1H2

18O for this temperature range
and D1H2H16O > D1H2

18O). However, theset99 values were
calculated for a single motionless droplet. Extending the
analysis from one single droplet to an ensemble of droplets
has been discussed byJouzel et al.(1975) who came to the
conclusion that this step would reduce the equilibration time,
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Fig. 2. Time required for a single spherical cloud droplet to reach 99 % isotopic equilibrium (both forδ2H and

δ18O) with the surrounding vapor at air temperatures prevailing at Schmücke.t99 is depicted for four different
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Fig. 2. Time required for a single spherical cloud droplet to reach
99 % isotopic equilibrium (both forδ2H and δ18O) with the sur-
rounding vapor at air temperatures prevailing at Schmücke. t99 is
depicted for four different droplet diameters: 22 µm, 16 µm and
4 µm corresponding to the cut-off sizes of the three stages of the
CASCC, and 100 µm which we assume to be the diameter of the
largest droplets that enter the CASCC.Dk values (k =

1H2H16O,
and1H2

18O) were deduced from the relations toD1H2
16O (Cappa

et al., 2003), andD1H2
16O was derived from campaign temperature

and the air pressure value (900 hPa) using the relation presented by
Hall and Pruppacher(1976).

as the droplets also grow due to collision and coalescence.
In summary, this implies that cloud droplets are in princi-
ple almost instantaneously in isotopic equilibrium with the
surrounding water vapor. Consequently, droplets basically
immediately “forget” their isotopic information which they
carry arriving from a different location in the cloud or as a re-
sult from longer droplet live times. Based on such short equi-
libration times, we do not expect that differences inδ values
among droplet sizes can be measured with the conventional
CASCC sampling technique, as the sampling intervals of 1
to 3 h were much larger than the equilibration times.

3.2 Collector performance

To verify the collector performance of the CASCC six
DI-samples have been collected and analyzed for isotope
ratio (raw data available onhttp://doi.pangaea.de/10.1594/
PANGAEA.788628). A two-way ANOVA with the factors
sample number (corresponds to the factor Time in Table1)
and size stages (Size, Table1) revealed that there was no sig-
nificant difference inδ values between the deionized water
(δ2HDI = −63.2±0.8 ‰ andδ18ODI = −9.63±0.05 ‰) and
the DI-samples, independent of the ambient meteorological
conditions. This agrees with the findings from Sect.3.1 and
the assumptions made in Sect.2.2: As the fan was turned
off, the exchange of water vapor between the saturated wa-
ter vapor volume inside the CASCC (which resulted from
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Table 1. F - andp-values for a two way ANOVA (factors: Time and Size) for the measuredδ2H andδ18O values for the six DI-samples
and for each cloud event separately comprising more than one cloud sample. The factor Time is represented by the sample number within
an event and was used as a categorical variable in the ANOVA. Bold indicates that the null hypothesis needs to be rejected at a significance
levelα = 0.05 (H0 (events): Cloud water from all vials have the sameδ values; H0 (DI-samples): Water from all vials have the sameδ values
as the DI water). For events 1, 5, 7 and 12, the ANOVA was only performed forδ values from stage 1 and 3, as at least oneδ value for the
stage 2 was missing. As there were 18 independent tests necessary for the cloud events, we applied the Bonferroni correction (Legendre and
Legendre, 1998) resulting in an adjusted significant levelαadj = 0.05/18= 2.7× 10−3 against which thep-values were compared.

δ2H δ18O

Size Time Size Time

Event F -value p-value F -value p-value F -value p-value F-value p-value

DI-samples 0.5 0.6297 1.6 0.2508 0.1 0.9047 2.4 0.1158

1 0.7 0.4255 67.1 <10−5 7.1 0.0373 81.0 <10−5

3 9.0 0.1001 161.4 0.0061 2.6 0.2792 68.3 0.0143
5 4.5 0.2802 0.7 0.5677 33.4 0.1091 2.9 0.3403
6 0.1 0.8980 3.7 0.0811 2.4 0.1739 11.9 0.0062
7 3.8 0.1914 1360.6 0.0007 98.3 0.0100 25205.0 <10−5

9 0.8 0.4943 197.5 <10−5 0.8 0.4703 69.0 <10−5

10 4.4 0.0338 81.07 <10−5 1.0 0.3817 13.3 <10−5

11 0.1 0.8782 15.0 0.0139 0.2 0.8536 6.5 0.0550
12 0.6 0.52 478.76 0.0021 2.3 0.2721 1348.2 0.0007

continuously spraying deionized water into the CASCC) and
the non-saturated conditions outside the CASCC was small.
Therefore, the isotope ratio of both water vapor and droplets
in the CASCC was mainly determined by the isotope ratio of
the deionized water. As the collected water in the collection
bottles did not differ significantly in isotope ratio from the
deionized water used for spraying, we conclude that no iso-
topic fractionation occurs during sampling. Hence, the col-
lected cloud water samples are representative of the actual
isotope ratio of the cloud droplets.

3.3 Hydrogen and oxygen isotope ratios of cloud water

In events 1, 5, 7, 8 and 12, cloud water could not be analyzed
for all stages, as either the vials broke (event 7) or insufficient
cloud water had been collected (events 1, 5, 7 and 12). So in
total, 115 vials could be used for the following analysis.

δ values varied over the whole measurement campaign
from −77 ‰ to−15 ‰ (δ2H) and from−12.1 ‰ to−3.9 ‰
(δ18O; Fig.3) and were slightly more depleted in heavy iso-
topologues than theδ values that have been measured in
fog in earlier studies (tabulated inScholl et al., 2011, from
−71 ‰ to +13 ‰ forδ2H and−10.4 ‰ to +2.7 ‰ forδ18O).
Nevertheless, the spread of our data was comparable to what
has been measured before.

The variability inδ values over time was generally larger
than the differences between the different size fractions from
the fog collector (Fig.3). Additionally, there was no clear
tendency of cloud water from one size fraction being more
enriched in heavy isotopologues than cloud water from the
others. In order to quantitatively determine whether there

was a difference between the isotope ratio for the different
droplet sizes, we carried out a two-way ANOVA for each
event separately, comprising at least two samples (Table1).
As the focus of the ANOVA was on the differences between
droplet sizes, we chose both the Time within the event (Ta-
ble1) and the collector stage (size in Table1) as factors. Time
was treated as a categorical variable represented by the sam-
ple number in our ANOVA. This means that we only tested
whether time in the event has an effect on the overall vari-
ance in our data, neglecting the question whether the abso-
lute time interval between samplings also has an effect. To
account for the increasing probability of type I error (reject-
ing the null hypothesis although it is true) due to 18 indepen-
dent ANOVAs, we adjusted the significance levelα = 0.05
using the Bonferroni criterion:αadj = 0.05/18= 2.7× 10−3

(Legendre and Legendre, 1998). The vials taken from the dif-
ferent stages of the collector did not differ significantly (sig-
nificance levelp < αadj) in theirδ2H andδ18O values. As the
Bonferroni criterion often leads to a very smallαadj, we also
used Holm’s procedure (Holm, 1979) to account for multiple
testing, which did not change the results.

Hence, these data are the first stable water isotopologue
data for size resolved cloud droplet sampling, providing em-
pirical evidence that there is no difference in isotope ratios
for different cloud droplet sizes of the same cloud measured
at the same time. This finding is in agreement with what we
would expect from the equilibration times calculated for a
single droplet illustrating that this simple model can be ap-
plied to a droplet ensemble. Still, for most of the events, the
samples differed significantly with respect to elapsed time.
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Measurement error in terms of standard errors of the IRMS measurements are shown as error bars. Cloud samples exceeding the1st 90-
percentile threshold (see Fig.4 for further details) are marked with an ellipse. Identification of the drivers of this temporal evolution as well
as interpretation is presented inSpiegel et al.(2012).

Besides changes in local thermodynamic conditions, airmass
history and transport as well as frontal passages could be
identified as reasons for these temporal changes inδ values
in the cloud droplets which are discussed in detail inSpiegel
et al.(2012).

3.4 Cloud dissolution

Although the two-step ANOVA showed that the differences
among the stages were not significant, the maximal dif-
ferences among the stages (1st = maxi,j=1,2,3

(∣∣δi − δj

∣∣))
tended to be larger for the first and the last data points during

the course of the event as well as for certain single sample
events (Fig.3).

This is discussed by a more detailed investigation of the
cloud sampling intervals in which1st was above the 90-
percentile both forδ2H andδ18O. This was the case for the
last cloud samples of event 10 and 11 (Figs.3 and4) as well
as the sample of event 41. We selected event 11 as a model

1Only one cloud sample was collected during event 4 with
the following δ values including standard errors for stage 1,
2, and 3: −72±0.3 ‰, −74±0.3 ‰, and −72±0.2 (δ2H) and
−10.9±0.02 ‰,−11.4±0.03 ‰ and−11.0±0.10 ‰ (δ18O).
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Fig. 4. Histograms for the maximum differences inδ2H (a) and
δ18O (b) values among vials of the three stages collected by the
CASCC (1st = maxi,j=1,2,3

(∣∣δi − δj
∣∣)) for all cloud samples. The

dashed line denotes the 90-percentile of the1st distribution (1.8 ‰
or 0.3 ‰).

event to explain the process leading to larger differences be-
tweenδ values of different stages at the end of a cloud event
(see Fig.5): The last cloud sample was collected during the
dissolution period of the cloud (gray hatched area in Fig.5c)
which was characterized by a decreasing LWC during the
sampling interval (gray line in Fig.5c). As LWC remained
> 0 g m−3, we assume that the air was still supersaturated
with water vapor during sampling. Simultaneously, the ef-
fective radiusReff increased (black line in Fig.5c) indicating
that the smaller droplets evaporate first when supersatura-
tion decreases. Consequently, the cloud water of stage 3 was
probably collected at the beginning of the sampling interval,
while the other two stages continued collecting cloud water
until the end of the sampling interval when smaller droplets
had already disappeared (Fig.5d). If we now assume that the
δ2H changed during the sampling interval (hypotheticalδ2H
of cloud droplets in Fig.5d), stage three represents aδ value
from the beginning of the sampling interval, while theδ value
of the cloud water collected in stage one and two is a mean
value of the whole sampling interval, which could explain
the observed difference. On the other hand, during sampling
interval 2, LWC andReff stay rather constant (Fig.5c), indi-
cating that all stages collected cloud water continuously. So
in all three stages, the measuredδ value represents a mean
value over the whole sampling interval 2 leading to a much
smaller difference between the stages than during sampling
interval 3 (Fig.5a). For the last cloud sample of event 10,
LWC andReff behaved similarly as described for event 11,
indicating cloud dissolution and hence the same collection
artifact. During cloud event 4,Reff varied strongly during the
whole sampling interval. Hence, we assume a rather inho-
mogeneous cloud and it is likely that the cloud water was
not collected simultaneously in the different stages for these
cloud samples as well, as not all droplet sizes were present
during the whole sampling interval. Consequently, we as-
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Fig. 5. Illustration of the collection artifact arising during the dis-
solution period of the cloud for event 11.(a) 1st δ

2H for all cloud
samples of event 11 including the 1.8 ‰ threshold as a dashed line.
(b) Sampling intervals of cloud sample 2 and 3 (1 is not shown).(c)
Liquid water content (LWC) and effective radius (Reff) measured
with the Particulate Volume Monitor (PVM-100). The dissolution
period of the cloud is indicated as a hatched area. (d, left axis) Col-
lecting times (estimated from the measurements in panel(c)) for
the three different CASCC stages and (d, right axis) hypothetical
δ2H evolution in cloud droplets which could lead to the observed
1st δ

2H depicted in(a). See Sect.3.4for detailed explanation.

sume that the differences in isotope ratios among the stages
for these cloud samples should be considered the result of
different collection times for the different size stages, which
can be regarded as a collection artifact.

4 Conclusions

In this work, we present the first size-resolved measurements
of stable water isotopologue ratios in cloud droplets. Our
result confirms our expectation that differences in isotope
ratios measured simultaneously in three size fractions are
within the analytical precision of the IRMS (Table1). This
result is independent of the isotope ratio itself and valid for
the whole range ofδ values of the collected samples. Our
equipment analysis also verified that there is no isotopic frac-
tionation of samples collected in a large-size active-strand
cloud collector (CASCC). Based on our measurements and
the theory presented we therefore expect no difference inδ
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values of all droplet sizes in fog. However, when the cloud
dissipated the differences between droplet sizes tended to be
larger, most probably reflecting different collection times of
the respective droplet sizes. Our suggestions for future stud-
ies are (1) that non-size resolved sampling of cloud droplets
is adequate and representative to measure the isotope ratio
of cloud droplets of all sizes, and (2) as the isotope ratio of
cloud water evolves with time, it is desirable to test shorter
sampling intervals (e.g. 15 to 30 min) to better resolve the
temporal evolution of the isotope ratio of the cloud droplets.
Furthermore, to investigate the cloud’s inhomogeneity, si-
multaneous measurements at different heights within in the
cloud and the development of airborne collection techniques
of cloud water for isotope analysis would be needed.
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