216 research outputs found

    Angiotensin-Converting Enzyme 2 (ACE2) Is a Key Modulator of the Renin Angiotensin System in Health and Disease

    Get PDF
    Angiotensin-converting enzyme 2 (ACE2) shares some homology with angiotensin-converting enzyme (ACE) but is not inhibited by ACE inhibitors. The main role of ACE2 is the degradation of Ang II resulting in the formation of angiotensin 1–7 (Ang 1–7) which opposes the actions of Ang II. Increased Ang II levels are thought to upregulate ACE2 activity, and in ACE2 deficient mice Ang II levels are approximately double that of wild-type mice, whilst Ang 1–7 levels are almost undetectable. Thus, ACE2 plays a crucial role in the RAS because it opposes the actions of Ang II. Consequently, it has a beneficial role in many diseases such as hypertension, diabetes, and cardiovascular disease where its expression is decreased. Not surprisingly, current therapeutic strategies for ACE2 involve augmenting its expression using ACE2 adenoviruses, recombinant ACE2 or compounds in these diseases thereby affording some organ protection

    The Renoprotective Actions of Peroxisome Proliferator-Activated Receptors Agonists in Diabetes

    Get PDF
    Pharmaceutical agonists of peroxisome proliferator-activated receptors (PPARs) are widely used in the management of type 2 diabetes, chiefly as lipid-lowering agents and oral hypoglycaemic agents. Although most of the focus has been placed on their cardiovascular effects, both positive and negative, these agents also have significant renoprotective actions in the diabetic kidney. Over and above action on metabolic control and effects on blood pressure, PPAR agonists also appear to have independent effects on a number of critical pathways that are implicated in the development and progression of diabetic kidney disease, including oxidative stress, inflammation, hypertrophy, and podocyte function. This review will examine these direct and indirect actions of PPAR agonists in the diabetic kidney and explore recent findings of clinical trials of PPAR agonists in patients with diabetes

    Retinal Arteriolar Dilation Predicts Retinopathy in Adolescents With Type 1 Diabetes

    Get PDF
    OBJECTIVE—Alterations in retinal vascular caliber may reflect early subclinical microvascular dysfunction. In this study, we examined the association of retinal vascular caliber to incident retinopathy in young patients with type 1 diabetes

    Valsartan Improves β-Cell Function and Insulin Sensitivity in Subjects With Impaired Glucose Metabolism: A randomized controlled trial

    Get PDF
    OBJECTIVE Recently, the Nateglinide and Valsartan in Impaired Glucose Tolerance Outcomes Research Trial demonstrated that treatment with the angiotensin receptor blocker (ARB) valsartan for 5 years resulted in a relative reduction of 14% in the incidence of type 2 diabetes in subjects with impaired glucose metabolism (IGM). We investigated whether improvements in beta-cell function and/or insulin sensitivity underlie these preventive effects of the ARB valsartan in the onset of type 2 diabetes. RESEARCH DESIGN AND METHODS In this randomized controlled, double-blind, two-center study, the effects of 26 weeks of valsartan (320 mg daily; n = 40) or placebo (n = 39) on beta-cell function and insulin sensitivity were assessed in subjects with impaired fasting glucose and/or impaired glucose tolerance, using a combined hyperinsulinemic-euglycemic and hyperglycemic clamp with subsequent arginine stimulation and a 2-h 75-g oral glucose tolerance test (OGTT). Treatment effects were analyzed using ANCOVA, adjusting for center, glucometabolic status, and sex. RESULTS Valsartan increased first-phase (P = 0.028) and second-phase (P = 0.002) glucose-stimulated insulin secretion compared with placebo, whereas the enhanced arginine-stimulated insulin secretion was comparable between groups (P = 0.25). In addition, valsartan increased the OGTT-derived insulinogenic index (representing first-phase insulin secretion after an oral glucose load; P = 0.027). Clamp-derived insulin sensitivity was significantly increased with valsartan compared with placebo (P = 0.049). Valsartan treatment significantly decreased systolic and diastolic blood pressure compared with placebo (P < 0.001). BMI remained unchanged in both treatment groups (P = 0.89). CONCLUSIONS Twenty-six weeks of valsartan treatment increased glucose-stimulated insulin release and insulin sensitivity in normotensive subjects with IGM. These findings may partly explain the beneficial effects of valsartan in the reduced incidence of type 2 diabetes

    Novel measures of cardiovascular health and its association with prevalence and progression of age-related macular degeneration: the CHARM study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To determine if novel measures of cardiovascular health are associated with prevalence or progression of age-related macular degeneration (AMD).</p> <p>Methods</p> <p>Measures of the cardiovascular system: included intima media thickness (IMT), pulse wave velocity (PWV), systemic arterial compliance (SAC), carotid augmentation index (AI). For the prevalence study, hospital-based AMD cases and population-based age- and gender-matched controls with no signs of AMD in either eye were enrolled. For the progression component, participants with early AMD were recruited from two previous studies; cases were defined as progression in one or both eyes and controls were defined as no progression in either eye.</p> <p>Results</p> <p>160 cases and 160 controls were included in the prevalence component. The upper two quartiles of SAC, implying good cardiovascular health, were significantly associated with increased risk of AMD (OR = 2.54, 95% CL = 1.29, 4.99). High PWV was associated with increased prevalent AMD. Progression was observed in 82 (32.3%) of the 254 subjects recruited for the progression component. Higher AI (worse cardiovascular function) was protective for AMD progression (OR = 0.30, 95%CL = 0.13, 0.69). Higher aortic PWV was associated with increased risk of AMD progression; the highest risk was seen with the second lowest velocity (OR = 6.22, 95% CL = 2.35, 16.46).</p> <p>Conclusion</p> <p>The results were unexpected in that better cardiovascular health was associated with increased risk of prevalent AMD and progression. Inconsistent findings between the prevalence and progression components could be due to truly different disease etiologies or to spurious findings, as can occur with inherent biases in case control studies of prevalence. Further investigation of these non-invasive methods of characterizing the cardiovascular system should be undertaken as they may help to further elucidate the role of the cardiovascular system in the etiology of prevalent AMD and progression.</p

    ACE2 gene expression is up-regulated in the human failing heart

    Get PDF
    BACKGROUND: ACE2 is a novel homologue of angiotensin converting enzyme (ACE). ACE2 is highly expressed in human heart and animal data suggest that ACE2 is an essential regulator of cardiac function in vivo. Since overactivity of the renin-angiotensin system contributes to the progression of heart failure, this investigation assessed changes in gene expression of ACE2, ACE, AT(1 )receptor and renin in the human failing heart. METHODS: The sensitive technique of quantitative reverse transcriptase polymerase chain reaction was used to determine the level of mRNA expression of ACE and ACE2 in human ventricular myocardium from donors with non-diseased hearts (n = 9), idiopathic dilated cardiomyopathy (IDC, n = 11) and ischemic cardiomyopathy (ICM, n = 12). Following logarithmic transformation of the data, a one-way analysis of variance was performed for each target gene followed by a Dunnett's test to compare the two disease groups IDC and ICM versus control. RESULTS: As anticipated, ACE mRNA was found to be significantly increased in the failing heart with a 3.1 and 2.4-fold up-regulation found in IDC and ICM relative to non-diseased myocardium. Expression of ACE2 mRNA was also significantly up-regulated in IDC (2.4-fold increase) and ICM (1.8-fold increase) versus non-diseased myocardium. No change in angiotensin AT(1 )receptor mRNA expression was found in failing myocardium and renin mRNA was not detected. CONCLUSIONS: These data suggest that ACE2 is up-regulated in human IDC and ICM and are consistent with the hypothesis that differential regulation of this enzyme may have important functional consequences in heart failure. This strengthens the hypothesis that ACE2 may be a relevant target for the treatment of heart failure and will hopefully spur further studies to clarify the functional effects in human myocardium of ACE2 derived peptides

    Hyperglycemia Induces a Dynamic Cooperativity of Histone Methylase and Demethylase Enzymes Associated With Gene-Activating Epigenetic Marks That Coexist on the Lysine Tail

    Get PDF
    OBJECTIVE: Results from the Diabetes Control Complications Trial (DCCT) and the subsequent Epidemiology of Diabetes Interventions and Complications (EDIC) Study and more recently from the U.K. Prospective Diabetes Study (UKPDS) have revealed that the deleterious end-organ effects that occurred in both conventional and more aggressively treated subjects continued to operate >5 years after the patients had returned to usual glycemic control and is interpreted as a legacy of past glycemia known as "hyperglycemic memory." We have hypothesized that transient hyperglycemia mediates persistent gene-activating events attributed to changes in epigenetic information. RESEARCH DESIGN AND METHODS: Models of transient hyperglycemia were used to link NFkappaB-p65 gene expression with H3K4 and H3K9 modifications mediated by the histone methyltransferases (Set7 and SuV39h1) and the lysine-specific demethylase (LSD1) by the immunopurification of soluble NFkappaB-p65 chromatin. RESULTS: The sustained upregulation of the NFkappaB-p65 gene as a result of ambient or prior hyperglycemia was associated with increased H3K4m1 but not H3K4m2 or H3K4m3. Furthermore, glucose was shown to have other epigenetic effects, including the suppression of H3K9m2 and H3K9m3 methylation on the p65 promoter. Finally, there was increased recruitment of the recently identified histone demethylase LSD1 to the p65 promoter as a result of prior hyperglycemia. CONCLUSIONS: These studies indicate that the active transcriptional state of the NFkappaB-p65 gene is linked with persisting epigenetic marks such as enhanced H3K4 and reduced H3K9 methylation, which appear to occur as a result of effects of the methyl-writing and methyl-erasing histone enzymes

    Association of dietary sodium intake with atherogenesis in experimental diabetes and with cardiovascular disease in patients with Type 1 diabetes

    Get PDF
    Abstract It is recommended that individuals with diabetes restrict their dietary sodium intake. However, although salt intake is correlated with BP (blood pressure), it also partly determines the activation state of the RAAS (reninangiotensin-aldosterone system), a key mediator of diabetes-associated atherosclerosis. apoE KO (apolipoprotein E knockout) mice were allocated for the induction of diabetes with streptozotocin or citrate buffer (controls) and further randomized to isocaloric diets containing 0.05 %, 0.3 % or 3.1 % sodium with or without the ACEi [ACE (angiotensin-converting enzyme) inhibitor] perindopril. After 6 weeks of study, plaque accumulation was quantified and markers of atherogenesis were assessed using RT-PCR (reverse transcription-PCR) and ELISA. The association of sodium intake and adverse cardiovascular and mortality outcomes were explored in 2648 adults with Type 1 diabetes without prior CVD (cardiovascular disease) from the FinnDiane study. A 0.05 % sodium diet was associated with increased plaque accumulation in diabetic apoE KO mice, associated with activation of the RAAS. By contrast, a diet containing 3.1 % sodium suppressed atherogenesis associated with suppression of the RAAS, with an efficacy comparable with ACE inhibition. In adults with Type 1 diabetes, low sodium intake was also associated with an increased risk of all-cause mortality and new-onset cardiovascular events. However, high sodium intake was also associated with adverse outcomes, leading to a J-shaped relationship overall. Although BP lowering is an important goal for the management of diabetes, off-target actions to activate the RAAS may contribute to an observed lack of protection from cardiovascular complications in patients with Type 1 diabetes with low sodium intake
    corecore