17 research outputs found

    Contribution Of Impaired Myocardial Insulin Signaling To Mitochondrial Dysfunction And Oxidative Stress In The Heart

    Get PDF
    Background—Diabetes-associated cardiac dysfunction is associated with mitochondrial dysfunction and oxidative stress, which may contribute to LV dysfunction. The contribution of altered myocardial insulin action, independently of associated changes in systemic metabolism is incompletely understood. The present study tested the hypothesis that perinatal loss of insulin signaling in the heart impairs mitochondrial function. Methods and Results—In 8-week-old mice with cardiomyocyte deletion of insulin receptors (CIRKO), inotropic reserves were reduced and mitochondria manifested respiratory defects for pyruvate that was associated with proportionate reductions in catalytic subunits of pyruvate dehydrogenase. Progressive age-dependent defects in oxygen consumption and ATP synthesis with the substrates glutamate and the fatty acid derivative palmitoyl carnitine (PC) were observed. Mitochondria were also uncoupled when exposed to PC due in part to increased ROS production and oxidative stress. Although proteomic and genomic approaches revealed a reduction in subsets of genes and proteins related to oxidative phosphorylation, no reduction in maximal activities of mitochondrial electron transport chain complexes were found. However, a disproportionate reduction in TCA cycle and FA oxidation proteins in mitochondria, suggest that defects in FA and pyruvate metabolism and TCA flux may explain the mitochondrial dysfunction observed. Conclusions—Impaired myocardial insulin signaling promotes oxidative stress and mitochondrial uncoupling, which together with reduced TCA and FA oxidative capacity impairs mitochondrial energetics. This study identifies specific contributions of impaired insulin action to mitochondrial dysfunction in the heart

    Risk assessment of climate systems for national security.

    Get PDF
    Climate change, through drought, flooding, storms, heat waves, and melting Arctic ice, affects the production and flow of resource within and among geographical regions. The interactions among governments, populations, and sectors of the economy require integrated assessment based on risk, through uncertainty quantification (UQ). This project evaluated the capabilities with Sandia National Laboratories to perform such integrated analyses, as they relate to (inter)national security. The combining of the UQ results from climate models with hydrological and economic/infrastructure impact modeling appears to offer the best capability for national security risk assessments

    Many Labs 5:Testing pre-data collection peer review as an intervention to increase replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3?9; median total sample = 1,279.5, range = 276?3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (?r = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00?.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19?.50)

    Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase 1 clinical-laboratory correlative trial

    No full text
    R115777 is a nonpeptidomimetic enzyme-specific inhibitor of farnesyl protein transferase (FT) that was developed as a potential inhibitor of Ras protein signaling, with antitumor activity in preclinical models. This study was a phase 1 trial of orally administered R115777 in 35 adults with poor-risk acute leukemias. Cohorts of patients received R115777 at doses ranging from 100 mg twice daily (bid) to 1200 mg bid for up to 21 days. Dose-limiting toxicity occurred at 1200 mg bid, with central neurotoxicity evidenced by ataxia, confusion, and dysarthria. Non–dose-limiting toxicities included reversible nausea, renal insufficiency, polydipsia, paresthesias, and myelosuppression. R115777 inhibited FT activity at 300 mg bid and farnesylation of FT substrates lamin A and HDJ-2 at 600 mg bid. Extracellular signal-regulated kinase (ERK), an effector enzyme of Ras-mediated signaling, was detected in its phosphorylated (activated) form in 8 (36.4%) of 22 pretreatment marrows and became undetectable in 4 of those 8 after one cycle of treatment. Pharmacokinetics revealed a linear relationship between dose and maximum plasma concentration or area under the curve over 12 hours at all dose levels. Weekly marrow samples demonstrated that R115777 accumulated in bone marrow in a dose-dependent fashion, with large increases in marrow drug levels beginning at 600 mg bid and with sustained levels throughout drug administration. Clinical responses occurred in 10 (29%) of the 34 evaluable patients, including 2 complete remissions. Genomic analyses failed to detect N-ras gene mutations in any of the 35 leukemias. The results of this first clinical trial of a signal transduction inhibitor in patients with acute leukemias suggest that inhibitors of FT may have important clinical antileukemic activity

    De novo putative loss-of-function variants in TAF4 are associated with a neuro-developmental disorder.

    No full text
    TATA-binding protein associated factor 4 (TAF4) is a subunit of the Transcription Factor IID (TFIID) complex, a central player in transcription initiation. Other members of this multimeric complex have been implicated previously as monogenic disease genes in human developmental disorders. TAF4 has not been described to date as a monogenic disease gene. We here present a cohort of eight individuals, each carrying de novo putative loss-of-function (pLoF) variants in TAF4 and expressing phenotypes consistent with a neuro-developmental disorder (NDD). Common features include intellectual disability, abnormal behavior, and facial dysmorphisms. We propose TAF4 as a novel dominant disease gene for NDD, and coin this novel disorder “TAF4-related NDD” (T4NDD). We place T4NDD in the context of other disorders related to TFIID subunits, revealing shared features of T4NDD with other TAF-opathies.</p
    corecore