15 research outputs found

    Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles

    Get PDF
    Several factors, including economical, environmental, and social factors, are involved in selection of the best fuel-based vehicles for road transportation. This leads to a multi-criteria selection problem for multi-alternatives. In this study, a multi-criteria assessment model was developed to rank different road transportation fuel-based vehicles (both renewable and non-renewable) using a method called Preference Ranking Organization Method for Enrichment and Evaluations (PROMETHEE). This method combines qualitative and quantitative criteria to rank various alternatives. In this study, vehicles based on gasoline, gasoline-electric (hybrid), E85 ethanol, diesel, B100 biodiesel, and compressed natural gas (CNG) were considered as alternatives. These alternatives were ranked based on five criteria: vehicle cost, fuel cost, distance between refueling stations, number of vehicle options available to the consumer, and greenhouse gas (GHG) emissions per unit distance traveled. In addition, sensitivity analyses were performed to study the impact of changes in various parameters on final ranking. Two base cases and several alternative scenarios were evaluated. In the base case scenario with higher weight on economical parameters, gasoline-based vehicle was ranked higher than other vehicles. In the base case scenario with higher weight on environmental parameters, hybrid vehicle was ranked first followed by biodiesel-based vehicle

    Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles

    No full text
    Several factors, including economical, environmental, and social factors, are involved in selection of the best fuel-based vehicles for road transportation. This leads to a multi-criteria selection problem for multi-alternatives. In this study, a multi-criteria assessment model was developed to rank different road transportation fuel-based vehicles (both renewable and non-renewable) using a method called Preference Ranking Organization Method for Enrichment and Evaluations (PROMETHEE). This method combines qualitative and quantitative criteria to rank various alternatives. In this study, vehicles based on gasoline, gasoline-electric (hybrid), E85 ethanol, diesel, B100 biodiesel, and compressed natural gas (CNG) were considered as alternatives. These alternatives were ranked based on five criteria: vehicle cost, fuel cost, distance between refueling stations, number of vehicle options available to the consumer, and greenhouse gas (GHG) emissions per unit distance traveled. In addition, sensitivity analyses were performed to study the impact of changes in various parameters on final ranking. Two base cases and several alternative scenarios were evaluated. In the base case scenario with higher weight on economical parameters, gasoline-based vehicle was ranked higher than other vehicles. In the base case scenario with higher weight on environmental parameters, hybrid vehicle was ranked first followed by biodiesel-based vehicle

    Inhibition of Hsp90 with synthetic macrolactones: synthesis and structural and biological evaluation of ring and conformational analogs of radicicol

    No full text
    A series of benzo-macrolactones of varying ring size and conformation has been prepared by chemical synthesis and evaluated by structural and biological techniques. Thus, 12- to 16-membered lactones were obtained by concise routes, involving ring-closing metathesis as a key step. In enzyme assays, the 13-, 15-, and 16-membered analogs are good inhibitors, suggesting that they can adopt the required conformation to fit in the ATP-binding site. This was confirmed by cocrystallization of 13-, 14-, and 15-membered lactones with the N-terminal domain of yeast Hsp90, showing that they bind similarly to the "natural" 14-membered radicicol. The most active compounds in the ATPase assays also showed the greatest growth-inhibitory potency in HCT116 human colon cancer cells and the established molecular signature of Hsp90 inhibition, i.e., depletion of client proteins with upregulation of Hsp70

    Propionate analogues of zearalenone bind to Hsp90.

    No full text
    By replacement of an acetate with propionate through organic synthesis a range of zearalenone analogues were prepared. As key steps in the synthesis of the analogues we used the Noyori hydrogenation of methyl acetoacetate followed by Frater alkylation of the enantiomeric 3-hydroxybutyrates. This converted the second acetate to a propionate. Through the derived alkyne, chain extension led to 3-methylundec-10-en-2-ol derivatives. These were condensed with 2,4-dimethoxy-6-vinylbenzoic acid. Ring-closing metathesis of the obtained esters led to macrolactones, which were deproteced to give the zearalenone analogues. Several of the analogues showed cytotoxicity against the L929 mouse fibroblast cell line comparable to zearalenone (9 microM) itself. In the thermal-shift assay, two analogues 35 and ent-35 displayed stronger binding than the natural product geldanamycin to the chaperone Hsp90
    corecore