389 research outputs found

    Search for Early Gamma-ray Production in Supernovae Located in a Dense Circumstellar Medium with the Fermi LAT

    Get PDF
    Supernovae (SNe) exploding in a dense circumstellar medium (CSM) are hypothesized to accelerate cosmic rays in collisionless shocks and emit GeV gamma rays and TeV neutrinos on a time scale of several months. We perform the first systematic search for gamma-ray emission in Fermi LAT data in the energy range from 100 MeV to 300 GeV from the ensemble of 147 SNe Type IIn exploding in dense CSM. We search for a gamma-ray excess at each SNe location in a one year time window. In order to enhance a possible weak signal, we simultaneously study the closest and optically brightest sources of our sample in a joint-likelihood analysis in three different time windows (1 year, 6 months and 3 months). For the most promising source of the sample, SN 2010jl (PTF10aaxf), we repeat the analysis with an extended time window lasting 4.5 years. We do not find a significant excess in gamma rays for any individual source nor for the combined sources and provide model-independent flux upper limits for both cases. In addition, we derive limits on the gamma-ray luminosity and the ratio of gamma-ray-to-optical luminosity ratio as a function of the index of the proton injection spectrum assuming a generic gamma-ray production model. Furthermore, we present detailed flux predictions based on multi-wavelength observations and the corresponding flux upper limit at 95% confidence level (CL) for the source SN 2010jl (PTF10aaxf).Comment: Accepted for publication in ApJ. Corresponding author: A. Franckowiak ([email protected]), updated author list and acknowledgement

    Multiwavelength Evidence for Quasi-periodic Modulation in the Gamma-ray Blazar PG 1553+113

    Get PDF
    We report for the first time a gamma-ray and multi-wavelength nearly-periodic oscillation in an active galactic nucleus. Using the Fermi Large Area Telescope (LAT) we have discovered an apparent quasi-periodicity in the gamma-ray flux (E >100 MeV) from the GeV/TeV BL Lac object PG 1553+113. The marginal significance of the 2.18 +/-0.08 year-period gamma-ray cycle is strengthened by correlated oscillations observed in radio and optical fluxes, through data collected in the OVRO, Tuorla, KAIT, and CSS monitoring programs and Swift UVOT. The optical cycle appearing in ~10 years of data has a similar period, while the 15 GHz oscillation is less regular than seen in the other bands. Further long-term multi-wavelength monitoring of this blazar may discriminate among the possible explanations for this quasi-periodicity.Comment: 8 pages, 5 figures. Accepted to The Astrophysical Journal Letters. Corresponding authors: S. Ciprini (ASDC/INFN), S. Cutini (ASDC/INFN), S. Larsson (Stockholm Univ/KTH), A. Stamerra (INAF/SNS), D. J. Thompson (NASA GSFC

    Constraints on dark matter models from a Fermi LAT search for high-energy cosmic-ray electrons from the Sun

    Full text link
    During its first year of data taking, the Large Area Telescope (LAT) onboard the Fermi Gamma-Ray Space Telescope has collected a large sample of high-energy cosmic-ray electrons and positrons (CREs). We present the results of a directional analysis of the CRE events, in which we searched for a flux excess correlated with the direction of the Sun. Two different and complementary analysis approaches were implemented, and neither yielded evidence of a significant CRE flux excess from the Sun. We derive upper limits on the CRE flux from the Sun's direction, and use these bounds to constrain two classes of dark matter models which predict a solar CRE flux: (1) models in which dark matter annihilates to CREs via a light intermediate state, and (2) inelastic dark matter models in which dark matter annihilates to CREs.Comment: 18 pages, 8 figures, accepted for publication in Physical Review D - contact authors: Francesco Loparco ([email protected]), M. Nicola Mazziotta ([email protected]) and Jennifer Siegal-Gaskins ([email protected]

    Gamma-ray flaring activity from the gravitationally lensed blazar PKS 1830-211 observed by Fermi LAT

    Get PDF
    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope routinely detects the highly dust-absorbed, reddened, and MeV-peaked flat spectrum radio quasar PKS 1830-211 (z=2.507). Its apparent isotropic gamma-ray luminosity (E>100 MeV) averaged over \sim 3 years of observations and peaking on 2010 October 14/15 at 2.9 X 10^{50} erg s^{-1}, makes it among the brightest high-redshift Fermi blazars. No published model with a single lens can account for all of the observed characteristics of this complex system. Based on radio observations, one expects time delayed variability to follow about 25 days after a primary flare, with flux about a factor 1.5 less. Two large gamma-ray flares of PKS 1830-211 have been detected by the LAT in the considered period and no substantial evidence for such a delayed activity was found. This allows us to place a lower limit of about 6 on the gamma rays flux ratio between the two lensed images. Swift XRT observations from a dedicated Target of Opportunity program indicate a hard spectrum and with no significant correlation of X-ray flux with the gamma-ray variability. The spectral energy distribution can be modeled with inverse Compton scattering of thermal photons from the dusty torus. The implications of the LAT data in terms of variability, the lack of evident delayed flare events, and different radio and gamma-ray flux ratios are discussed. Microlensing effects, absorption, size and location of the emitting regions, the complex mass distribution of the system, an energy-dependent inner structure of the source, and flux suppression by the lens galaxy for one image path may be considered as hypotheses for understanding our results.Comment: 14 pages, 6 figures, 2 tables. Accepted by the The Astrophysical Journal. Corresponding authors: S. Ciprini (ASI ASDC & INAF OAR, Rome, Italy), S. Buson (INAF Padova & Univ. of Padova, Padova, Italy), J. Finke (NRL, Washington, DC, USA), F. D'Ammando (INAF IRA, Bologna, Italy

    Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B

    Get PDF
    We present an analysis of the gamma-ray data obtained with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the direction of SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a significance of 38 sigma is found to coincide with SNR W49B. The energy spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The luminosity is estimated to be 1.5x10^{36} (D/8 kpc)^2 erg s^-1 in this energy range. There is no indication that the gamma-ray emission comes from a pulsar. Assuming that the SNR shell is the site of gamma-ray production, the observed spectrum can be explained either by the decay of neutral pi mesons produced through the proton-proton collisions or by electron bremsstrahlung. The calculated energy density of relativistic particles responsible for the LAT flux is estimated to be remarkably large, U_{e,p}>10^4 eV cm^-3, for either gamma-ray production mechanism.Comment: 9 pages, 10 figure

    Fermi-LAT observations of the exceptional gamma-ray outbursts of 3C 273 in September 2009

    Full text link
    We present the light curves and spectral data of two exceptionally luminous gamma-ray outburts observed by the Large Area Telescope (LAT) experiment on board Fermi Gamma-ray Space Telescope from 3C 273 in September 2009. During these flares, having a duration of a few days, the source reached its highest gamma-ray flux ever measured. This allowed us to study in some details their spectral and temporal structures. The rise and decay are asymmetric on timescales of 6 hours, and the spectral index was significantly harder during the flares than during the preceding 11 months. We also found that short, very intense flares put out the same time-integrated energy as long, less intense flares like that observed in August 2009.Comment: Corresponding authors: E. Massaro, [email protected]; G. Tosti, [email protected]. 15 pages, 4 figures, published in The Astrophysical Journal Letters, Volume 714, Issue 1, pp. L73-L78 (2010

    Fermi Large Area Telescope Observations of the Cosmic-Ray Induced gamma-ray Emission of the Earth's Atmosphere

    Full text link
    We report on measurements of the cosmic-ray induced gamma-ray emission of Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The LAT has observed the Earth during its commissioning phase and with a dedicated Earth-limb following observation in September 2008. These measurements yielded 6.4 x 10^6 photons with energies >100MeV and ~250hours total livetime for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission - often referred to as Earth albedo gamma-ray emission - has a power-law shape up to 500 GeV with spectral index Gamma = 2.79+-0.06.Comment: Accepted for publication in PR

    Fermi Gamma-ray Space Telescope Observations of the Gamma-ray Outburst from 3C 454.3 in November 2010

    Full text link
    The flat-spectrum radio quasar 3C 454.3 underwent an extraordinary 5-day gamma-ray outburst in November 2010 where the daily flux measured with the Fermi Large Area Telescope (LAT) at photon energies E>100 MeV reached (66+/-2) x 10^-6 ph cm^-2 s^-1. This is a factor of 3 higher than its previous maximum flux recorded in December 2009 and ~5 times brighter than the Vela pulsar, which is normally the brightest source in the gamma-ray sky. The 3-hr peak flux was (85+/-5) x 10^-6 ph cm^-2 s^-1, corresponding to an apparent isotropic luminosity of 2.1+/-0.2 10^50 erg s^-1, the highest ever recorded for a blazar. In this paper, we investigate the features of this exceptional event in the gamma-ray band of the Fermi-LAT. In contrast to previous flares of the same source observed with the Fermi-LAT, clear spectral changes are observed during the flare.Comment: Contact authors: Lise Escande, Charles Dermer and Benoit Lott. One new figure. Accepted for publication by ApJ
    corecore