64 research outputs found

    Metabolic Signatures of Lung Cancer in Biofluids: NMR-Based Metabonomics of Blood Plasma

    Get PDF
    In this work, the variations in the metabolic profile of blood plasma from lung cancer patients and healthy controls were investigated through NMR-based metabonomics, to assess the potential of this approach for lung cancer screening and diagnosis. PLS-DA modeling of CPMG spectra from plasma, subjected to Monte Carlo Cross Validation, allowed cancer patients to be discriminated from controls with sensitivity and specificity levels of about 90%. Relatively lower HDL and higher VLDL + LDL in the patients' plasma, together with increased lactate and pyruvate and decreased levels of glucose, citrate, formate, acetate, several amino acids (alanine, glutamine, histidine, tyrosine, valine), and methanol, could be detected. These changes were found to be present at initial disease stages and could be related to known cancer biochemical hallmarks, such as enhanced glycolysis, glutaminolysis, and gluconeogenesis, together with suppressed Krebs cycle and reduced lipid catabolism, thus supporting the hypothesis of a systemic metabolic signature for lung cancer. Despite the possible confounding influence of age, smoking habits, and other uncontrolled factors, these results indicate that NMR-based metabonomics of blood plasma can be useful as a screening tool to identify suspicious cases for subsequent, more specific radiological tests, thus contributing to improved disease management.ERDF - Competitive Factors Thematic Operational ProgrammeFCT/PTDC/ QUI/68017/2006FCOMP-01-0124-FEDER-007439SFRH/BD/ 63430/2009National UNESCO Committee - L'Oréal Medals of Honor for Women in Science 200Portuguese National NMR Network - RNRM

    Application of holistic liquid chromatography-high resolution mass spectrometry based urinary metabolomics for prostate cancer detection and biomarker discovery

    Get PDF
    Human exhibit wide variations in their metabolic profiles because of differences in genetic factors, diet and lifestyle. Therefore in order to detect metabolic differences between individuals robust analytical methods are required. A protocol was produced based on the use of Liquid Chromatography- High Resolution Mass Spectrometry (LC-HRMS) in combination with orthogonal Hydrophilic Interaction (HILIC) and Reversed Phase (RP) liquid chromatography methods for the analysis of the urinary metabolome, which was then evaluated as a diagnostic tool for prostate cancer (a common but highly heterogeneous condition). The LC-HRMS method was found to be robust and exhibited excellent repeatability for retention times (0.9. In addition, using the receiver operator characteristics (ROC) test, the area under curve (AUC) for the combination of the four best characterised biomarker compounds was 0.896. The four biomarker compounds were also found to differ significantly (

    The associations of anthropometric, behavioural and sociodemographic factors with circulating concentrations of IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3 in a pooled analysis of 16,024 men from 22 studies

    Get PDF
    Insulin-like growth factors (IGFs) and insulin-like growth factor binding proteins (IGFBPs) have been implicated in the aetiology of several cancers. To better understand whether anthropometric, behavioural, and sociodemographic factors may play a role in cancer risk via IGF signalling, we examined the cross-sectional associations of these exposures with circulating concentrations of IGFs (IGF-I, IGF-II) and IGFBPs (IGFBP-1, IGFBP-2, IGFBP-3). The Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group dataset includes individual participant data from 16,024 male controls (i.e. without prostate cancer) aged 22-89 years from 22 prospective studies. Geometric means of protein concentrations were estimated using analysis of variance, adjusted for relevant covariates. Older age was associated with higher concentrations of IGFBP-1 and IGFBP-2 and lower concentrations of IGF-I, IGF-II, and IGFBP-3. Higher body mass index was associated with lower concentrations of IGFBP-1 and IGFBP-2. Taller height was associated with higher concentrations of IGF-I and IGFBP-3 and lower concentrations of IGFBP-1. Smokers had higher concentrations of IGFBP-1 and IGFBP-2 and lower concentrations of IGFBP-3 than non-smokers. Higher alcohol consumption was associated with higher concentrations of IGF-II and lower concentrations of IGF-I and IGFBP-2. African Americans had lower concentrations of IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 and Hispanics had lower IGF-I, IGF-II and IGFBP-3 than non-Hispanic whites. These findings indicate that a range of anthropometric, behavioural, and sociodemographic factors are associated with circulating concentrations of IGFs and IGFBPs in men, which will lead to a greater understanding of the mechanisms through which these factors influence cancer risk. This article is protected by copyright. All rights reserved

    Circulating free testosterone and risk of aggressive prostate cancer: Prospective and Mendelian randomisation analyses in international consortia

    Get PDF
    Previous studies had limited power to assess the associations of testosterone with aggressive disease as a primary endpoint. Further, the association of genetically predicted testosterone with aggressive disease is not known. We investigated the associations of calculated free and measured total testosterone and sex hormone-binding globulin (SHBG) with aggressive, overall and early-onset prostate cancer. In blood-based analyses, odds ratios (OR) and 95% confidence intervals (CI) for prostate cancer were estimated using conditional logistic regression from prospective analysis of biomarker concentrations in the Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group (up to 25 studies, 14 944 cases and 36 752 controls, including 1870 aggressive prostate cancers). In Mendelian randomisation (MR) analyses, using instruments identified using UK Biobank (up to 194 453 men) and outcome data from PRACTICAL (up to 79 148 cases and 61 106 controls, including 15 167 aggressive cancers), ORs were estimated using the inverse-variance weighted method. Free testosterone was associated with aggressive disease in MR analyses (OR per 1 SD = 1.23, 95% CI = 1.08-1.40). In blood-based analyses there was no association with aggressive disease overall, but there was heterogeneity by age at blood collection (OR for men aged <60 years 1.14, CI = 1.02-1.28; Phet = .0003: inverse association for older ages). Associations for free testosterone were positive for overall prostate cancer (MR: 1.20, 1.08-1.34; blood-based: 1.03, 1.01-1.05) and early-onset prostate cancer (MR: 1.37, 1.09-1.73; blood-based: 1.08, 0.98-1.19). SHBG and total testosterone were inversely associated with overall prostate cancer in blood-based analyses, with null associations in MR analysis. Our results support free testosterone, rather than total testosterone, in the development of prostate cancer, including aggressive subgroups

    The associations of anthropometric, behavioural and sociodemographic factors with circulating concentrations of IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3 in a pooled analysis of 16,024 men from 22 studies

    Get PDF
    Insulin‐like growth factors (IGFs) and insulin‐like growth factor binding proteins (IGFBPs) have been implicated in the aetiology of several cancers. To better understand whether anthropometric, behavioural and sociodemographic factors may play a role in cancer risk via IGF signalling, we examined the cross‐sectional associations of these exposures with circulating concentrations of IGFs (IGF‐I and IGF‐II) and IGFBPs (IGFBP‐1, IGFBP‐2 and IGFBP‐3). The Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group dataset includes individual participant data from 16,024 male controls (i.e. without prostate cancer) aged 22–89 years from 22 prospective studies. Geometric means of protein concentrations were estimated using analysis of variance, adjusted for relevant covariates. Older age was associated with higher concentrations of IGFBP‐1 and IGFBP‐2 and lower concentrations of IGF‐I, IGF‐II and IGFBP‐3. Higher body mass index was associated with lower concentrations of IGFBP‐1 and IGFBP‐2. Taller height was associated with higher concentrations of IGF‐I and IGFBP‐3 and lower concentrations of IGFBP‐1. Smokers had higher concentrations of IGFBP‐1 and IGFBP‐2 and lower concentrations of IGFBP‐3 than nonsmokers. Higher alcohol consumption was associated with higher concentrations of IGF‐II and lower concentrations of IGF‐I and IGFBP‐2. African Americans had lower concentrations of IGF‐II, IGFBP‐1, IGFBP‐2 and IGFBP‐3 and Hispanics had lower IGF‐I, IGF‐II and IGFBP‐3 than non‐Hispanic whites. These findings indicate that a range of anthropometric, behavioural and sociodemographic factors are associated with circulating concentrations of IGFs and IGFBPs in men, which will lead to a greater understanding of the mechanisms through which these factors influence cancer risk

    Characterization of Prostate Cancer Bone Metastases According to Expression Levels of Steroidogenic Enzymes and Androgen Receptor Splice Variants. Characterization of Prostate Cancer Bone Metastases According to Expression Levels of Steroidogenic Enzymes

    No full text
    Abstract Background: Intra-tumoral steroidogenesis and constitutive androgen receptor (AR) activity have been associated with castration-resistant prostate cancer (CRPC). This study aimed to examine if CRPC bone metastases expressed higher levels of steroid-converting enzymes than untreated bone metastases. Steroidogenic enzyme levels were also analyzed in relation to expression of constitutively active AR variants (AR-Vs) and to clinical and pathological variables

    Identification of metabolites associated with prostate cancer risk : a nested case-control study with long follow-up in the Northern Sweden Health and Disease Study

    No full text
    Background: Prostate cancer is the second most frequently diagnosed cancer in men. Metabolomics can potentially provide new insights into the aetiology of prostate cancer by identifying new metabolic risk factors. This study investigated the prospective association between plasma metabolite concentrations and prostate cancer risk, both overall and by stratifying for disease aggressiveness and baseline age. Methods: In a case-control study nested in the Northern Sweden Health and Disease Study, pre-diagnostic concentrations of 148 plasma metabolites were determined using targeted mass spectrometry- and nuclear magnetic resonance-based metabolomics in 777 prostate cancer cases (follow-up &gt;= 5 years) and 777 matched controls. Associations between prostate cancer risk and metabolite concentrations were investigated using conditional logistic regression conditioned on matching factors (body mass index, age and sample storage time). Corrections for multiple testing were performed using false discovery rate (20%) and Bonferroni. Metabolomics analyses generated new hypotheses, which were investigated by leveragingfood frequency questionnaires(FFQs) and oral glucose tolerance tests performed at baseline. Results: After correcting for multiple testing, two lysophosphatidylcholines (LPCs) were positively associated with risk of overall prostate cancer (all ages and in older subjects). The strongest association was for LPC C17:0 in older subjects (OR = 2.08; 95% CI 1.45-2.98;p &lt; 0.0001, significant also after the Bonferroni correction). Observed associations with risk of overall prostate cancer in younger subjects were positive for glycine and inverse for pyruvate. For aggressive prostate cancer, there were positive associations with six glycerophospholipids (LPC C17:0, LPC C20:3, LPC C20:4, PC ae C38:3, PC ae C38:4 and PC ae C40:2), while there was an inverse association with acylcarnitine C18:2. Moreover, plasma LPC C17:0 concentrations positively correlated with estimated dietary intake of fatty acid C17:0 from the FFQs. The associations between glycerophospholipids and prostate cancer were stronger in case-controls with normal glucose tolerance. Conclusions: Several glycerophospholipids were positively associated with risk of overall and aggressive prostate cancer. The strongest association was observed for LPC C17:0. The associations between glycerophospholipids and prostate cancer risk were stronger in case-controls with normal glucose tolerance, suggesting a link between the glucose metabolism status and risk of prostate cancer
    • 

    corecore